mirror of
				https://gitee.com/coder-xiaomo/leetcode-problemset
				synced 2025-11-04 19:53:12 +08:00 
			
		
		
		
	国外版
This commit is contained in:
		
							
								
								
									
										37
									
								
								算法题(国外版)/maximum-subarray.html
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								算法题(国外版)/maximum-subarray.html
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,37 @@
 | 
			
		||||
<p>Given an integer array <code>nums</code>, find the contiguous subarray (containing at least one number) which has the largest sum and return <em>its sum</em>.</p>
 | 
			
		||||
 | 
			
		||||
<p>A <strong>subarray</strong> is a <strong>contiguous</strong> part of an array.</p>
 | 
			
		||||
 | 
			
		||||
<p> </p>
 | 
			
		||||
<p><strong>Example 1:</strong></p>
 | 
			
		||||
 | 
			
		||||
<pre>
 | 
			
		||||
<strong>Input:</strong> nums = [-2,1,-3,4,-1,2,1,-5,4]
 | 
			
		||||
<strong>Output:</strong> 6
 | 
			
		||||
<strong>Explanation:</strong> [4,-1,2,1] has the largest sum = 6.
 | 
			
		||||
</pre>
 | 
			
		||||
 | 
			
		||||
<p><strong>Example 2:</strong></p>
 | 
			
		||||
 | 
			
		||||
<pre>
 | 
			
		||||
<strong>Input:</strong> nums = [1]
 | 
			
		||||
<strong>Output:</strong> 1
 | 
			
		||||
</pre>
 | 
			
		||||
 | 
			
		||||
<p><strong>Example 3:</strong></p>
 | 
			
		||||
 | 
			
		||||
<pre>
 | 
			
		||||
<strong>Input:</strong> nums = [5,4,-1,7,8]
 | 
			
		||||
<strong>Output:</strong> 23
 | 
			
		||||
</pre>
 | 
			
		||||
 | 
			
		||||
<p> </p>
 | 
			
		||||
<p><strong>Constraints:</strong></p>
 | 
			
		||||
 | 
			
		||||
<ul>
 | 
			
		||||
	<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
 | 
			
		||||
	<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
 | 
			
		||||
</ul>
 | 
			
		||||
 | 
			
		||||
<p> </p>
 | 
			
		||||
<p><strong>Follow up:</strong> If you have figured out the <code>O(n)</code> solution, try coding another solution using the <strong>divide and conquer</strong> approach, which is more subtle.</p>
 | 
			
		||||
		Reference in New Issue
	
	Block a user