mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-09-04 23:11:41 +08:00
update
This commit is contained in:
32
leetcode/problem/count-elements-with-maximum-frequency.html
Normal file
32
leetcode/problem/count-elements-with-maximum-frequency.html
Normal file
@@ -0,0 +1,32 @@
|
||||
<p>You are given an array <code>nums</code> consisting of <strong>positive</strong> integers.</p>
|
||||
|
||||
<p>Return <em>the <strong>total frequencies</strong> of elements in</em><em> </em><code>nums</code> <em>such that those elements all have the <strong>maximum</strong> frequency</em>.</p>
|
||||
|
||||
<p>The <strong>frequency</strong> of an element is the number of occurrences of that element in the array.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> nums = [1,2,2,3,1,4]
|
||||
<strong>Output:</strong> 4
|
||||
<strong>Explanation:</strong> The elements 1 and 2 have a frequency of 2 which is the maximum frequency in the array.
|
||||
So the number of elements in the array with maximum frequency is 4.
|
||||
</pre>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> nums = [1,2,3,4,5]
|
||||
<strong>Output:</strong> 5
|
||||
<strong>Explanation:</strong> All elements of the array have a frequency of 1 which is the maximum.
|
||||
So the number of elements in the array with maximum frequency is 5.
|
||||
</pre>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 100</code></li>
|
||||
<li><code>1 <= nums[i] <= 100</code></li>
|
||||
</ul>
|
@@ -0,0 +1,48 @@
|
||||
<p>You are given a <strong>0-indexed</strong> string <code>s</code>, a string <code>a</code>, a string <code>b</code>, and an integer <code>k</code>.</p>
|
||||
|
||||
<p>An index <code>i</code> is <strong>beautiful</strong> if:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>0 <= i <= s.length - a.length</code></li>
|
||||
<li><code>s[i..(i + a.length - 1)] == a</code></li>
|
||||
<li>There exists an index <code>j</code> such that:
|
||||
<ul>
|
||||
<li><code>0 <= j <= s.length - b.length</code></li>
|
||||
<li><code>s[j..(j + b.length - 1)] == b</code></li>
|
||||
<li><code>|j - i| <= k</code></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<p>Return <em>the array that contains beautiful indices in <strong>sorted order from smallest to largest</strong></em>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> s = "isawsquirrelnearmysquirrelhouseohmy", a = "my", b = "squirrel", k = 15
|
||||
<strong>Output:</strong> [16,33]
|
||||
<strong>Explanation:</strong> There are 2 beautiful indices: [16,33].
|
||||
- The index 16 is beautiful as s[16..17] == "my" and there exists an index 4 with s[4..11] == "squirrel" and |16 - 4| <= 15.
|
||||
- The index 33 is beautiful as s[33..34] == "my" and there exists an index 18 with s[18..25] == "squirrel" and |33 - 18| <= 15.
|
||||
Thus we return [16,33] as the result.
|
||||
</pre>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> s = "abcd", a = "a", b = "a", k = 4
|
||||
<strong>Output:</strong> [0]
|
||||
<strong>Explanation:</strong> There is 1 beautiful index: [0].
|
||||
- The index 0 is beautiful as s[0..0] == "a" and there exists an index 0 with s[0..0] == "a" and |0 - 0| <= 4.
|
||||
Thus we return [0] as the result.
|
||||
</pre>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= k <= s.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= a.length, b.length <= 10</code></li>
|
||||
<li><code>s</code>, <code>a</code>, and <code>b</code> contain only lowercase English letters.</li>
|
||||
</ul>
|
@@ -0,0 +1,48 @@
|
||||
<p>You are given a <strong>0-indexed</strong> string <code>s</code>, a string <code>a</code>, a string <code>b</code>, and an integer <code>k</code>.</p>
|
||||
|
||||
<p>An index <code>i</code> is <strong>beautiful</strong> if:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>0 <= i <= s.length - a.length</code></li>
|
||||
<li><code>s[i..(i + a.length - 1)] == a</code></li>
|
||||
<li>There exists an index <code>j</code> such that:
|
||||
<ul>
|
||||
<li><code>0 <= j <= s.length - b.length</code></li>
|
||||
<li><code>s[j..(j + b.length - 1)] == b</code></li>
|
||||
<li><code>|j - i| <= k</code></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<p>Return <em>the array that contains beautiful indices in <strong>sorted order from smallest to largest</strong></em>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> s = "isawsquirrelnearmysquirrelhouseohmy", a = "my", b = "squirrel", k = 15
|
||||
<strong>Output:</strong> [16,33]
|
||||
<strong>Explanation:</strong> There are 2 beautiful indices: [16,33].
|
||||
- The index 16 is beautiful as s[16..17] == "my" and there exists an index 4 with s[4..11] == "squirrel" and |16 - 4| <= 15.
|
||||
- The index 33 is beautiful as s[33..34] == "my" and there exists an index 18 with s[18..25] == "squirrel" and |33 - 18| <= 15.
|
||||
Thus we return [16,33] as the result.
|
||||
</pre>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> s = "abcd", a = "a", b = "a", k = 4
|
||||
<strong>Output:</strong> [0]
|
||||
<strong>Explanation:</strong> There is 1 beautiful index: [0].
|
||||
- The index 0 is beautiful as s[0..0] == "a" and there exists an index 0 with s[0..0] == "a" and |0 - 0| <= 4.
|
||||
Thus we return [0] as the result.
|
||||
</pre>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= k <= s.length <= 5 * 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= a.length, b.length <= 5 * 10<sup>5</sup></code></li>
|
||||
<li><code>s</code>, <code>a</code>, and <code>b</code> contain only lowercase English letters.</li>
|
||||
</ul>
|
@@ -0,0 +1,45 @@
|
||||
<p>You are given an integer <code>k</code> and an integer <code>x</code>.</p>
|
||||
|
||||
<p>Consider <code>s</code> is the <strong>1-indexed </strong>binary representation of an integer <code>num</code>. The <strong>price</strong> of a number <code>num</code> is the number of <code>i</code>'s such that <code>i % x == 0</code> and <code><font face="monospace">s[i]</font></code> is a <strong>set bit</strong>.</p>
|
||||
|
||||
<p>Return <em>the <b>greatest</b> integer </em><code>num</code><em> such that the sum of <strong>prices</strong> of all numbers from </em><code>1</code><em> to </em><code>num</code><em> is less than or equal to </em><code>k</code><em>.</em></p>
|
||||
|
||||
<p><strong>Note</strong>:</p>
|
||||
|
||||
<ul>
|
||||
<li>In the binary representation of a number <strong>set bit</strong> is a bit of value <code>1</code>.</li>
|
||||
<li>The binary representation of a number will be indexed from right to left. For example, if <code>s == 11100</code>, <code>s[4] == 1</code> and <code>s[2] == 0</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> k = 9, x = 1
|
||||
<strong>Output:</strong> 6
|
||||
<strong>Explanation:</strong> The numbers 1, 2, 3, 4, 5, and 6 can be written in binary representation as "1", "10", "11", "100", "101", and "110" respectively.
|
||||
Since x is equal to 1, the price of each number is the number of its set bits.
|
||||
The number of set bits in these numbers is 9. So the sum of the prices of the first 6 numbers is 9.
|
||||
So the answer is 6.</pre>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>Input:</strong> k = 7, x = 2
|
||||
<strong>Output:</strong> 9
|
||||
<strong>Explanation:</strong> Since x is equal to 2, we should just check even<sup>th</sup> bits.
|
||||
The second bit of binary representation of numbers 2 and 3 is a set bit. So the sum of their prices is 2.
|
||||
The second bit of binary representation of numbers 6 and 7 is a set bit. So the sum of their prices is 2.
|
||||
The fourth bit of binary representation of numbers 8 and 9 is a set bit but their second bit is not. So the sum of their prices is 2.
|
||||
Numbers 1, 4, and 5 don't have set bits in their even<sup>th</sup> bits in their binary representation. So the sum of their prices is 0.
|
||||
The second and the fourth bit of the binary representation of the number 10 are a set bit. So its price is 2.
|
||||
The sum of the prices of the first 9 numbers is 6.
|
||||
Because the sum of the prices of the first 10 numbers is 8, the answer is 9.</pre>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= k <= 10<sup>15</sup></code></li>
|
||||
<li><code>1 <= x <= 8</code></li>
|
||||
</ul>
|
Reference in New Issue
Block a user