1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-06 07:51:41 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee

移除零宽空格

This commit is contained in:
2025-05-25 15:06:02 +08:00
parent 59597532bc
commit 3070bed723
272 changed files with 1031 additions and 749 deletions

View File

@@ -6,7 +6,7 @@
"boundTopicId": null,
"title": "Minimum Incompatibility",
"titleSlug": "minimum-incompatibility",
"content": "<p>You are given an integer array <code>nums</code> and an integer <code>k</code>. You are asked to distribute this array into <code>k</code> subsets of <strong>equal size</strong> such that there are no two equal elements in the same subset.</p>\n\n<p>A subset&#39;s <strong>incompatibility</strong> is the difference between the maximum and minimum elements in that array.</p>\n\n<p>Return <em>the <strong>minimum possible sum of incompatibilities</strong> of the </em><code>k</code> <em>subsets after distributing the array optimally, or return </em><code>-1</code><em> if it is not possible.</em></p>\n\n<p>A subset is a group integers that appear in the array with no particular order.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [1,2,1,4], k = 2\n<strong>Output:</strong> 4\n<strong>Explanation:</strong> The optimal distribution of subsets is [1,2] and [1,4].\nThe incompatibility is (2-1) + (4-1) = 4.\nNote that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements.</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [6,3,8,1,3,1,2,2], k = 4\n<strong>Output:</strong> 6\n<strong>Explanation:</strong> The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3].\nThe incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6.\n</pre>\n\n<p><strong class=\"example\">Example 3:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [5,3,3,6,3,3], k = 3\n<strong>Output:</strong> -1\n<strong>Explanation:</strong> It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.\n</pre>\n\n<p>&nbsp;</p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>1 &lt;= k &lt;= nums.length &lt;= 16</code></li>\n\t<li><code>nums.length</code> is divisible by <code>k</code></li>\n\t<li><code>1 &lt;= nums[i] &lt;= nums.length</code></li>\n</ul>\n",
"content": "<p>You are given an integer array <code>nums</code> and an integer <code>k</code>. You are asked to distribute this array into <code>k</code> subsets of <strong>equal size</strong> such that there are no two equal elements in the same subset.</p>\n\n<p>A subset&#39;s <strong>incompatibility</strong> is the difference between the maximum and minimum elements in that array.</p>\n\n<p>Return <em>the <strong>minimum possible sum of incompatibilities</strong> of the </em><code>k</code> <em>subsets after distributing the array optimally, or return </em><code>-1</code><em> if it is not possible.</em></p>\n\n<p>A subset is a group integers that appear in the array with no particular order.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [1,2,1,4], k = 2\n<strong>Output:</strong> 4\n<strong>Explanation:</strong> The optimal distribution of subsets is [1,2] and [1,4].\nThe incompatibility is (2-1) + (4-1) = 4.\nNote that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements.</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [6,3,8,1,3,1,2,2], k = 4\n<strong>Output:</strong> 6\n<strong>Explanation:</strong> The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3].\nThe incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6.\n</pre>\n\n<p><strong class=\"example\">Example 3:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [5,3,3,6,3,3], k = 3\n<strong>Output:</strong> -1\n<strong>Explanation:</strong> It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.\n</pre>\n\n<p>&nbsp;</p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>1 &lt;= k &lt;= nums.length &lt;= 16</code></li>\n\t<li><code>nums.length</code> is divisible by <code>k</code></li>\n\t<li><code>1 &lt;= nums[i] &lt;= nums.length</code></li>\n</ul>\n",
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": false,