1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-05 23:41:41 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
This commit is contained in:
2022-05-02 23:44:12 +08:00
parent 7ea03594b3
commit 2a71c78585
4790 changed files with 11696 additions and 10944 deletions

View File

@@ -12,7 +12,7 @@
"translatedContent": "二维平面上有 $N$ 条直线,形式为 `y = kx + b`,其中 `k`、`b`为整数 且 `k > 0`。所有直线以 `[k,b]` 的形式存于二维数组 `lines` 中,不存在重合的两条直线。两两直线之间可能存在一个交点,最多会有 $C_N^2$ 个交点。我们用一个平行于坐标轴的矩形覆盖所有的交点请问这个矩形最小面积是多少。若直线之间无交点、仅有一个交点或所有交点均在同一条平行坐标轴的直线上则返回0。\n\n注意返回结果是浮点数与标准答案 **绝对误差或相对误差** 在 10^-4 以内的结果都被视为正确结果\n\n\n**示例 1**\n> 输入:`lines = [[2,3],[3,0],[4,1]]`\n>\n> 输出:`48.00000`\n>\n> 解释:三条直线的三个交点为 (3, 9) (1, 5) 和 (-1, -3)。最小覆盖矩形左下角为 (-1, -3) 右上角为 (3,9),面积为 48\n\n\n**示例 2**\n> 输入:`lines = [[1,1],[2,3]]`\n>\n> 输出:`0.00000`\n>\n> 解释:仅有一个交点 (-2-1\n\n\n**限制:**\n+ `1 <= lines.length <= 10^5 且 lines[i].length == 2`\n+ `1 <= lines[0] <= 10000`\n+ `-10000 <= lines[1] <= 10000`\n+ `与标准答案绝对误差或相对误差在 10^-4 以内的结果都被视为正确结果`",
"isPaidOnly": false,
"difficulty": "Hard",
"likes": 15,
"likes": 17,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
@@ -168,7 +168,7 @@
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"1K\", \"totalSubmission\": \"4.8K\", \"totalAcceptedRaw\": 1035, \"totalSubmissionRaw\": 4758, \"acRate\": \"21.8%\"}",
"stats": "{\"totalAccepted\": \"1.2K\", \"totalSubmission\": \"5K\", \"totalAcceptedRaw\": 1163, \"totalSubmissionRaw\": 5031, \"acRate\": \"23.1%\"}",
"hints": [],
"solution": null,
"status": null,