mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-09-05 23:41:41 +08:00
update
This commit is contained in:
@@ -12,7 +12,7 @@
|
||||
"translatedContent": "二维平面上有 $N$ 条直线,形式为 `y = kx + b`,其中 `k`、`b`为整数 且 `k > 0`。所有直线以 `[k,b]` 的形式存于二维数组 `lines` 中,不存在重合的两条直线。两两直线之间可能存在一个交点,最多会有 $C_N^2$ 个交点。我们用一个平行于坐标轴的矩形覆盖所有的交点,请问这个矩形最小面积是多少。若直线之间无交点、仅有一个交点或所有交点均在同一条平行坐标轴的直线上,则返回0。\n\n注意:返回结果是浮点数,与标准答案 **绝对误差或相对误差** 在 10^-4 以内的结果都被视为正确结果\n\n\n**示例 1:**\n> 输入:`lines = [[2,3],[3,0],[4,1]]`\n>\n> 输出:`48.00000`\n>\n> 解释:三条直线的三个交点为 (3, 9) (1, 5) 和 (-1, -3)。最小覆盖矩形左下角为 (-1, -3) 右上角为 (3,9),面积为 48\n\n\n**示例 2:**\n> 输入:`lines = [[1,1],[2,3]]`\n>\n> 输出:`0.00000`\n>\n> 解释:仅有一个交点 (-2,-1)\n\n\n**限制:**\n+ `1 <= lines.length <= 10^5 且 lines[i].length == 2`\n+ `1 <= lines[0] <= 10000`\n+ `-10000 <= lines[1] <= 10000`\n+ `与标准答案绝对误差或相对误差在 10^-4 以内的结果都被视为正确结果`",
|
||||
"isPaidOnly": false,
|
||||
"difficulty": "Hard",
|
||||
"likes": 15,
|
||||
"likes": 17,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
@@ -168,7 +168,7 @@
|
||||
"__typename": "CodeSnippetNode"
|
||||
}
|
||||
],
|
||||
"stats": "{\"totalAccepted\": \"1K\", \"totalSubmission\": \"4.8K\", \"totalAcceptedRaw\": 1035, \"totalSubmissionRaw\": 4758, \"acRate\": \"21.8%\"}",
|
||||
"stats": "{\"totalAccepted\": \"1.2K\", \"totalSubmission\": \"5K\", \"totalAcceptedRaw\": 1163, \"totalSubmissionRaw\": 5031, \"acRate\": \"23.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
|
Reference in New Issue
Block a user