mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-10-22 21:46:46 +08:00
update
This commit is contained in:
@@ -12,7 +12,7 @@
|
||||
"translatedContent": "<p>给你一个正整数组成的数组 <code>nums</code> ,返回 <code>nums</code> 中一个 <strong>升序 </strong>子数组的最大可能元素和。</p>\n\n<p>子数组是数组中的一个连续数字序列。</p>\n\n<p>已知子数组 <code>[nums<sub>l</sub>, nums<sub>l+1</sub>, ..., nums<sub>r-1</sub>, nums<sub>r</sub>]</code> ,若对所有 <code>i</code>(<code>l <= i < r</code>),<code>nums<sub>i </sub> < nums<sub>i+1</sub></code> 都成立,则称这一子数组为 <strong>升序</strong> 子数组。注意,大小为 <code>1</code> 的子数组也视作 <strong>升序</strong> 子数组。</p>\n\n<p> </p>\n\n<p><strong>示例 1:</strong></p>\n\n<pre>\n<strong>输入:</strong>nums = [10,20,30,5,10,50]\n<strong>输出:</strong>65\n<strong>解释:</strong>[5,10,50] 是元素和最大的升序子数组,最大元素和为 65 。\n</pre>\n\n<p><strong>示例 2:</strong></p>\n\n<pre>\n<strong>输入:</strong>nums = [10,20,30,40,50]\n<strong>输出:</strong>150\n<strong>解释:</strong>[10,20,30,40,50] 是元素和最大的升序子数组,最大元素和为 150 。 \n</pre>\n\n<p><strong>示例 3:</strong></p>\n\n<pre>\n<strong>输入:</strong>nums = [12,17,15,13,10,11,12]\n<strong>输出:</strong>33\n<strong>解释:</strong>[10,11,12] 是元素和最大的升序子数组,最大元素和为 33 。 \n</pre>\n\n<p><strong>示例 4:</strong></p>\n\n<pre>\n<strong>输入:</strong>nums = [100,10,1]\n<strong>输出:</strong>100\n</pre>\n\n<p> </p>\n\n<p><strong>提示:</strong></p>\n\n<ul>\n\t<li><code>1 <= nums.length <= 100</code></li>\n\t<li><code>1 <= nums[i] <= 100</code></li>\n</ul>\n",
|
||||
"isPaidOnly": false,
|
||||
"difficulty": "Easy",
|
||||
"likes": 23,
|
||||
"likes": 25,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
@@ -137,7 +137,7 @@
|
||||
"__typename": "CodeSnippetNode"
|
||||
}
|
||||
],
|
||||
"stats": "{\"totalAccepted\": \"11.5K\", \"totalSubmission\": \"17K\", \"totalAcceptedRaw\": 11523, \"totalSubmissionRaw\": 17021, \"acRate\": \"67.7%\"}",
|
||||
"stats": "{\"totalAccepted\": \"11.9K\", \"totalSubmission\": \"17.6K\", \"totalAcceptedRaw\": 11900, \"totalSubmissionRaw\": 17614, \"acRate\": \"67.6%\"}",
|
||||
"hints": [
|
||||
"It is fast enough to check all possible subarrays",
|
||||
"The end of each ascending subarray will be the start of the next"
|
||||
|
Reference in New Issue
Block a user