mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-10-19 20:16:48 +08:00
update
This commit is contained in:
File diff suppressed because it is too large
Load Diff
161
leetcode/originData/count-almost-equal-pairs-i.json
Normal file
161
leetcode/originData/count-almost-equal-pairs-i.json
Normal file
File diff suppressed because one or more lines are too long
161
leetcode/originData/count-almost-equal-pairs-ii.json
Normal file
161
leetcode/originData/count-almost-equal-pairs-ii.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
173
leetcode/originData/count-the-number-of-good-nodes.json
Normal file
173
leetcode/originData/count-the-number-of-good-nodes.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
193
leetcode/originData/find-the-count-of-monotonic-pairs-i.json
Normal file
193
leetcode/originData/find-the-count-of-monotonic-pairs-i.json
Normal file
File diff suppressed because one or more lines are too long
189
leetcode/originData/find-the-count-of-monotonic-pairs-ii.json
Normal file
189
leetcode/originData/find-the-count-of-monotonic-pairs-ii.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
173
leetcode/originData/find-the-power-of-k-size-subarrays-i.json
Normal file
173
leetcode/originData/find-the-power-of-k-size-subarrays-i.json
Normal file
File diff suppressed because one or more lines are too long
176
leetcode/originData/find-the-power-of-k-size-subarrays-ii.json
Normal file
176
leetcode/originData/find-the-power-of-k-size-subarrays-ii.json
Normal file
File diff suppressed because one or more lines are too long
178
leetcode/originData/maximum-energy-boost-from-two-drinks.json
Normal file
178
leetcode/originData/maximum-energy-boost-from-two-drinks.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
179
leetcode/originData/snake-in-matrix.json
Normal file
179
leetcode/originData/snake-in-matrix.json
Normal file
File diff suppressed because one or more lines are too long
61
leetcode/problem/count-almost-equal-pairs-i.html
Normal file
61
leetcode/problem/count-almost-equal-pairs-i.html
Normal file
@@ -0,0 +1,61 @@
|
||||
<p>You are given an array <code>nums</code> consisting of positive integers.</p>
|
||||
|
||||
<p>We call two integers <code>x</code> and <code>y</code> in this problem <strong>almost equal</strong> if both integers can become equal after performing the following operation <strong>at most once</strong>:</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose <strong>either</strong> <code>x</code> or <code>y</code> and swap any two digits within the chosen number.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return the number of indices <code>i</code> and <code>j</code> in <code>nums</code> where <code>i < j</code> such that <code>nums[i]</code> and <code>nums[j]</code> are <strong>almost equal</strong>.</p>
|
||||
|
||||
<p><strong>Note</strong> that it is allowed for an integer to have leading zeros after performing an operation.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [3,12,30,17,21]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">2</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The almost equal pairs of elements are:</p>
|
||||
|
||||
<ul>
|
||||
<li>3 and 30. By swapping 3 and 0 in 30, you get 3.</li>
|
||||
<li>12 and 21. By swapping 1 and 2 in 12, you get 21.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,1,1]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">10</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>Every two elements in the array are almost equal.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [123,231]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">0</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>We cannot swap any two digits of 123 or 231 to reach the other.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= nums.length <= 100</code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>6</sup></code></li>
|
||||
</ul>
|
59
leetcode/problem/count-almost-equal-pairs-ii.html
Normal file
59
leetcode/problem/count-almost-equal-pairs-ii.html
Normal file
@@ -0,0 +1,59 @@
|
||||
<p><strong>Attention</strong>: In this version, the number of operations that can be performed, has been increased to <strong>twice</strong>.<!-- notionvc: 278e7cb2-3b05-42fa-8ae9-65f5fd6f7585 --></p>
|
||||
|
||||
<p>You are given an array <code>nums</code> consisting of positive integers.</p>
|
||||
|
||||
<p>We call two integers <code>x</code> and <code>y</code> <strong>almost equal</strong> if both integers can become equal after performing the following operation <strong>at most <u>twice</u></strong>:</p>
|
||||
|
||||
<ul>
|
||||
<li>Choose <strong>either</strong> <code>x</code> or <code>y</code> and swap any two digits within the chosen number.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return the number of indices <code>i</code> and <code>j</code> in <code>nums</code> where <code>i < j</code> such that <code>nums[i]</code> and <code>nums[j]</code> are <strong>almost equal</strong>.</p>
|
||||
|
||||
<p><strong>Note</strong> that it is allowed for an integer to have leading zeros after performing an operation.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1023,2310,2130,213]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The almost equal pairs of elements are:</p>
|
||||
|
||||
<ul>
|
||||
<li>1023 and 2310. By swapping the digits 1 and 2, and then the digits 0 and 3 in 1023, you get 2310.</li>
|
||||
<li>1023 and 213. By swapping the digits 1 and 0, and then the digits 1 and 2 in 1023, you get 0213, which is 213.</li>
|
||||
<li>2310 and 213. By swapping the digits 2 and 0, and then the digits 3 and 2 in 2310, you get 0213, which is 213.</li>
|
||||
<li>2310 and 2130. By swapping the digits 3 and 1 in 2310, you get 2130.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,10,100]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The almost equal pairs of elements are:</p>
|
||||
|
||||
<ul>
|
||||
<li>1 and 10. By swapping the digits 1 and 0 in 10, you get 01 which is 1.</li>
|
||||
<li>1 and 100. By swapping the second 0 with the digit 1 in 100, you get 001, which is 1.</li>
|
||||
<li>10 and 100. By swapping the first 0 with the digit 1 in 100, you get 010, which is 10.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= nums.length <= 5000</code></li>
|
||||
<li><code>1 <= nums[i] < 10<sup>7</sup></code></li>
|
||||
</ul>
|
@@ -0,0 +1,56 @@
|
||||
<p>You are given a <strong>binary</strong> string <code>s</code> and an integer <code>k</code>.</p>
|
||||
|
||||
<p>A <strong>binary string</strong> satisfies the <strong>k-constraint</strong> if <strong>either</strong> of the following conditions holds:</p>
|
||||
|
||||
<ul>
|
||||
<li>The number of <code>0</code>'s in the string is at most <code>k</code>.</li>
|
||||
<li>The number of <code>1</code>'s in the string is at most <code>k</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return an integer denoting the number of <span data-keyword="substring-nonempty">substrings</span> of <code>s</code> that satisfy the <strong>k-constraint</strong>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">s = "10101", k = 1</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">12</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>Every substring of <code>s</code> except the substrings <code>"1010"</code>, <code>"10101"</code>, and <code>"0101"</code> satisfies the k-constraint.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">s = "1010101", k = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">25</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>Every substring of <code>s</code> except the substrings with a length greater than 5 satisfies the k-constraint.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">s = "11111", k = 1</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">15</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>All substrings of <code>s</code> satisfy the k-constraint.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= s.length <= 50 </code></li>
|
||||
<li><code>1 <= k <= s.length</code></li>
|
||||
<li><code>s[i]</code> is either <code>'0'</code> or <code>'1'</code>.</li>
|
||||
</ul>
|
@@ -0,0 +1,50 @@
|
||||
<p>You are given a <strong>binary</strong> string <code>s</code> and an integer <code>k</code>.</p>
|
||||
|
||||
<p>You are also given a 2D integer array <code>queries</code>, where <code>queries[i] = [l<sub>i</sub>, r<sub>i</sub>]</code>.</p>
|
||||
|
||||
<p>A <strong>binary string</strong> satisfies the <strong>k-constraint</strong> if <strong>either</strong> of the following conditions holds:</p>
|
||||
|
||||
<ul>
|
||||
<li>The number of <code>0</code>'s in the string is at most <code>k</code>.</li>
|
||||
<li>The number of <code>1</code>'s in the string is at most <code>k</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return an integer array <code>answer</code>, where <code>answer[i]</code> is the number of <span data-keyword="substring-nonempty">substrings</span> of <code>s[l<sub>i</sub>..r<sub>i</sub>]</code> that satisfy the <strong>k-constraint</strong>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">s = "0001111", k = 2, queries = [[0,6]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[26]</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>For the query <code>[0, 6]</code>, all substrings of <code>s[0..6] = "0001111"</code> satisfy the k-constraint except for the substrings <code>s[0..5] = "000111"</code> and <code>s[0..6] = "0001111"</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">s = "010101", k = 1, queries = [[0,5],[1,4],[2,3]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[15,9,3]</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The substrings of <code>s</code> with a length greater than 3 do not satisfy the k-constraint.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= s.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>s[i]</code> is either <code>'0'</code> or <code>'1'</code>.</li>
|
||||
<li><code>1 <= k <= s.length</code></li>
|
||||
<li><code>1 <= queries.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>queries[i] == [l<sub>i</sub>, r<sub>i</sub>]</code></li>
|
||||
<li><code>0 <= l<sub>i</sub> <= r<sub>i</sub> < s.length</code></li>
|
||||
<li>All queries are distinct.</li>
|
||||
</ul>
|
55
leetcode/problem/count-the-number-of-good-nodes.html
Normal file
55
leetcode/problem/count-the-number-of-good-nodes.html
Normal file
@@ -0,0 +1,55 @@
|
||||
<p>There is an <strong>undirected</strong> tree with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>, and rooted at node <code>0</code>. You are given a 2D integer array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree.</p>
|
||||
|
||||
<p>A node is <strong>good</strong> if all the <span data-keyword="subtree">subtrees</span> rooted at its children have the same size.</p>
|
||||
|
||||
<p>Return the number of <strong>good</strong> nodes in the given tree.</p>
|
||||
|
||||
<p>A <strong>subtree</strong> of <code>treeName</code> is a tree consisting of a node in <code>treeName</code> and all of its descendants.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">7</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
<img alt="" src="https://assets.leetcode.com/uploads/2024/05/26/tree1.png" style="width: 360px; height: 158px;" />
|
||||
<p>All of the nodes of the given tree are good.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">edges = [[0,1],[1,2],[2,3],[3,4],[0,5],[1,6],[2,7],[3,8]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">6</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
<img alt="" src="https://assets.leetcode.com/uploads/2024/06/03/screenshot-2024-06-03-193552.png" style="width: 360px; height: 303px;" />
|
||||
<p>There are 6 good nodes in the given tree. They are colored in the image above.</p>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">edges = [[0,1],[1,2],[1,3],[1,4],[0,5],[5,6],[6,7],[7,8],[0,9],[9,10],[9,12],[10,11]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">12</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
<img alt="" src="https://assets.leetcode.com/uploads/2024/08/08/rob.jpg" style="width: 450px; height: 277px;" />
|
||||
<p>All nodes except node 9 are good.</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= n <= 10<sup>5</sup></code></li>
|
||||
<li><code>edges.length == n - 1</code></li>
|
||||
<li><code>edges[i].length == 2</code></li>
|
||||
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < n</code></li>
|
||||
<li>The input is generated such that <code>edges</code> represents a valid tree.</li>
|
||||
</ul>
|
@@ -0,0 +1,91 @@
|
||||
<p>You are given an integer array <code>nums</code>, an integer <code>k</code>, and an integer <code>multiplier</code>.</p>
|
||||
|
||||
<p>You need to perform <code>k</code> operations on <code>nums</code>. In each operation:</p>
|
||||
|
||||
<ul>
|
||||
<li>Find the <strong>minimum</strong> value <code>x</code> in <code>nums</code>. If there are multiple occurrences of the minimum value, select the one that appears <strong>first</strong>.</li>
|
||||
<li>Replace the selected minimum value <code>x</code> with <code>x * multiplier</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return an integer array denoting the <em>final state</em> of <code>nums</code> after performing all <code>k</code> operations.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,3,5,6], k = 5, multiplier = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[8,4,6,5,6]</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Operation</th>
|
||||
<th>Result</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 1</td>
|
||||
<td>[2, 2, 3, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 2</td>
|
||||
<td>[4, 2, 3, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 3</td>
|
||||
<td>[4, 4, 3, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 4</td>
|
||||
<td>[4, 4, 6, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 5</td>
|
||||
<td>[8, 4, 6, 5, 6]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 3, multiplier = 4</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[16,8]</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Operation</th>
|
||||
<th>Result</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 1</td>
|
||||
<td>[4, 2]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 2</td>
|
||||
<td>[4, 8]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 3</td>
|
||||
<td>[16, 8]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 100</code></li>
|
||||
<li><code>1 <= nums[i] <= 100</code></li>
|
||||
<li><code>1 <= k <= 10</code></li>
|
||||
<li><code>1 <= multiplier <= 5</code></li>
|
||||
</ul>
|
@@ -0,0 +1,97 @@
|
||||
<p>You are given an integer array <code>nums</code>, an integer <code>k</code>, and an integer <code>multiplier</code>.</p>
|
||||
|
||||
<p>You need to perform <code>k</code> operations on <code>nums</code>. In each operation:</p>
|
||||
|
||||
<ul>
|
||||
<li>Find the <strong>minimum</strong> value <code>x</code> in <code>nums</code>. If there are multiple occurrences of the minimum value, select the one that appears <strong>first</strong>.</li>
|
||||
<li>Replace the selected minimum value <code>x</code> with <code>x * multiplier</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>After the <code>k</code> operations, apply <strong>modulo</strong> <code>10<sup>9</sup> + 7</code> to every value in <code>nums</code>.</p>
|
||||
|
||||
<p>Return an integer array denoting the <em>final state</em> of <code>nums</code> after performing all <code>k</code> operations and then applying the modulo.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,3,5,6], k = 5, multiplier = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[8,4,6,5,6]</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Operation</th>
|
||||
<th>Result</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 1</td>
|
||||
<td>[2, 2, 3, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 2</td>
|
||||
<td>[4, 2, 3, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 3</td>
|
||||
<td>[4, 4, 3, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 4</td>
|
||||
<td>[4, 4, 6, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 5</td>
|
||||
<td>[8, 4, 6, 5, 6]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After applying modulo</td>
|
||||
<td>[8, 4, 6, 5, 6]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [100000,2000], k = 2, multiplier = 1000000</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[999999307,999999993]</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
<tr>
|
||||
<th>Operation</th>
|
||||
<th>Result</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 1</td>
|
||||
<td>[100000, 2000000000]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After operation 2</td>
|
||||
<td>[100000000000, 2000000000]</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>After applying modulo</td>
|
||||
<td>[999999307, 999999993]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
|
||||
<li><code>1 <= k <= 10<sup>9</sup></code></li>
|
||||
<li><code>1 <= multiplier <= 10<sup>6</sup></code></li>
|
||||
</ul>
|
50
leetcode/problem/find-the-count-of-monotonic-pairs-i.html
Normal file
50
leetcode/problem/find-the-count-of-monotonic-pairs-i.html
Normal file
@@ -0,0 +1,50 @@
|
||||
<p>You are given an array of <strong>positive</strong> integers <code>nums</code> of length <code>n</code>.</p>
|
||||
|
||||
<p>We call a pair of <strong>non-negative</strong> integer arrays <code>(arr1, arr2)</code> <strong>monotonic</strong> if:</p>
|
||||
|
||||
<ul>
|
||||
<li>The lengths of both arrays are <code>n</code>.</li>
|
||||
<li><code>arr1</code> is monotonically <strong>non-decreasing</strong>, in other words, <code>arr1[0] <= arr1[1] <= ... <= arr1[n - 1]</code>.</li>
|
||||
<li><code>arr2</code> is monotonically <strong>non-increasing</strong>, in other words, <code>arr2[0] >= arr2[1] >= ... >= arr2[n - 1]</code>.</li>
|
||||
<li><code>arr1[i] + arr2[i] == nums[i]</code> for all <code>0 <= i <= n - 1</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return the count of <strong>monotonic</strong> pairs.</p>
|
||||
|
||||
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [2,3,2]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The good pairs are:</p>
|
||||
|
||||
<ol>
|
||||
<li><code>([0, 1, 1], [2, 2, 1])</code></li>
|
||||
<li><code>([0, 1, 2], [2, 2, 0])</code></li>
|
||||
<li><code>([0, 2, 2], [2, 1, 0])</code></li>
|
||||
<li><code>([1, 2, 2], [1, 1, 0])</code></li>
|
||||
</ol>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [5,5,5,5]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">126</span></p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= n == nums.length <= 2000</code></li>
|
||||
<li><code>1 <= nums[i] <= 50</code></li>
|
||||
</ul>
|
50
leetcode/problem/find-the-count-of-monotonic-pairs-ii.html
Normal file
50
leetcode/problem/find-the-count-of-monotonic-pairs-ii.html
Normal file
@@ -0,0 +1,50 @@
|
||||
<p>You are given an array of <strong>positive</strong> integers <code>nums</code> of length <code>n</code>.</p>
|
||||
|
||||
<p>We call a pair of <strong>non-negative</strong> integer arrays <code>(arr1, arr2)</code> <strong>monotonic</strong> if:</p>
|
||||
|
||||
<ul>
|
||||
<li>The lengths of both arrays are <code>n</code>.</li>
|
||||
<li><code>arr1</code> is monotonically <strong>non-decreasing</strong>, in other words, <code>arr1[0] <= arr1[1] <= ... <= arr1[n - 1]</code>.</li>
|
||||
<li><code>arr2</code> is monotonically <strong>non-increasing</strong>, in other words, <code>arr2[0] >= arr2[1] >= ... >= arr2[n - 1]</code>.</li>
|
||||
<li><code>arr1[i] + arr2[i] == nums[i]</code> for all <code>0 <= i <= n - 1</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return the count of <strong>monotonic</strong> pairs.</p>
|
||||
|
||||
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [2,3,2]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">4</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>The good pairs are:</p>
|
||||
|
||||
<ol>
|
||||
<li><code>([0, 1, 1], [2, 2, 1])</code></li>
|
||||
<li><code>([0, 1, 2], [2, 2, 0])</code></li>
|
||||
<li><code>([0, 2, 2], [2, 1, 0])</code></li>
|
||||
<li><code>([1, 2, 2], [1, 1, 0])</code></li>
|
||||
</ol>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [5,5,5,5]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">126</span></p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= n == nums.length <= 2000</code></li>
|
||||
<li><code>1 <= nums[i] <= 1000</code></li>
|
||||
</ul>
|
@@ -0,0 +1,53 @@
|
||||
<p>You are given two <strong>positive</strong> integers <code>n</code> and <code>k</code>.</p>
|
||||
|
||||
<p>An integer <code>x</code> is called <strong>k-palindromic</strong> if:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>x</code> is a <span data-keyword="palindrome-integer">palindrome</span>.</li>
|
||||
<li><code>x</code> is divisible by <code>k</code>.</li>
|
||||
</ul>
|
||||
|
||||
<p>Return the<strong> largest</strong> integer having <code>n</code> digits (as a string) that is <strong>k-palindromic</strong>.</p>
|
||||
|
||||
<p><strong>Note</strong> that the integer must <strong>not</strong> have leading zeros.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 3, k = 5</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">"595"</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>595 is the largest k-palindromic integer with 3 digits.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 1, k = 4</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">"8"</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>4 and 8 are the only k-palindromic integers with 1 digit.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 5, k = 6</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">"89898"</span></p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= n <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= k <= 9</code></li>
|
||||
</ul>
|
58
leetcode/problem/find-the-power-of-k-size-subarrays-i.html
Normal file
58
leetcode/problem/find-the-power-of-k-size-subarrays-i.html
Normal file
@@ -0,0 +1,58 @@
|
||||
<p>You are given an array of integers <code>nums</code> of length <code>n</code> and a <em>positive</em> integer <code>k</code>.</p>
|
||||
|
||||
<p>The <strong>power</strong> of an array is defined as:</p>
|
||||
|
||||
<ul>
|
||||
<li>Its <strong>maximum</strong> element if <em>all</em> of its elements are <strong>consecutive</strong> and <strong>sorted</strong> in <strong>ascending</strong> order.</li>
|
||||
<li>-1 otherwise.</li>
|
||||
</ul>
|
||||
|
||||
<p>You need to find the <strong>power</strong> of all <span data-keyword="subarray-nonempty">subarrays</span> of <code>nums</code> of size <code>k</code>.</p>
|
||||
|
||||
<p>Return an integer array <code>results</code> of size <code>n - k + 1</code>, where <code>results[i]</code> is the <em>power</em> of <code>nums[i..(i + k - 1)]</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,3,2,5], k = 3</span></p>
|
||||
|
||||
<p><strong>Output:</strong> [3,4,-1,-1,-1]</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>There are 5 subarrays of <code>nums</code> of size 3:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>[1, 2, 3]</code> with the maximum element 3.</li>
|
||||
<li><code>[2, 3, 4]</code> with the maximum element 4.</li>
|
||||
<li><code>[3, 4, 3]</code> whose elements are <strong>not</strong> consecutive.</li>
|
||||
<li><code>[4, 3, 2]</code> whose elements are <strong>not</strong> sorted.</li>
|
||||
<li><code>[3, 2, 5]</code> whose elements are <strong>not</strong> consecutive.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [2,2,2,2,2], k = 4</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[-1,-1]</span></p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [3,2,3,2,3,2], k = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[-1,3,-1,3,-1]</span></p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= n == nums.length <= 500</code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= k <= n</code></li>
|
||||
</ul>
|
58
leetcode/problem/find-the-power-of-k-size-subarrays-ii.html
Normal file
58
leetcode/problem/find-the-power-of-k-size-subarrays-ii.html
Normal file
@@ -0,0 +1,58 @@
|
||||
<p>You are given an array of integers <code>nums</code> of length <code>n</code> and a <em>positive</em> integer <code>k</code>.</p>
|
||||
|
||||
<p>The <strong>power</strong> of an array is defined as:</p>
|
||||
|
||||
<ul>
|
||||
<li>Its <strong>maximum</strong> element if <em>all</em> of its elements are <strong>consecutive</strong> and <strong>sorted</strong> in <strong>ascending</strong> order.</li>
|
||||
<li>-1 otherwise.</li>
|
||||
</ul>
|
||||
|
||||
<p>You need to find the <strong>power</strong> of all <span data-keyword="subarray-nonempty">subarrays</span> of <code>nums</code> of size <code>k</code>.</p>
|
||||
|
||||
<p>Return an integer array <code>results</code> of size <code>n - k + 1</code>, where <code>results[i]</code> is the <em>power</em> of <code>nums[i..(i + k - 1)]</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,3,2,5], k = 3</span></p>
|
||||
|
||||
<p><strong>Output:</strong> [3,4,-1,-1,-1]</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>There are 5 subarrays of <code>nums</code> of size 3:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>[1, 2, 3]</code> with the maximum element 3.</li>
|
||||
<li><code>[2, 3, 4]</code> with the maximum element 4.</li>
|
||||
<li><code>[3, 4, 3]</code> whose elements are <strong>not</strong> consecutive.</li>
|
||||
<li><code>[4, 3, 2]</code> whose elements are <strong>not</strong> sorted.</li>
|
||||
<li><code>[3, 2, 5]</code> whose elements are <strong>not</strong> consecutive.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [2,2,2,2,2], k = 4</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[-1,-1]</span></p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">nums = [3,2,3,2,3,2], k = 2</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">[-1,3,-1,3,-1]</span></p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= n == nums.length <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= nums[i] <= 10<sup>6</sup></code></li>
|
||||
<li><code>1 <= k <= n</code></li>
|
||||
</ul>
|
47
leetcode/problem/maximum-energy-boost-from-two-drinks.html
Normal file
47
leetcode/problem/maximum-energy-boost-from-two-drinks.html
Normal file
@@ -0,0 +1,47 @@
|
||||
<p>You are given two integer arrays <code>energyDrinkA</code> and <code>energyDrinkB</code> of the same length <code>n</code> by a futuristic sports scientist. These arrays represent the energy boosts per hour provided by two different energy drinks, A and B, respectively.</p>
|
||||
|
||||
<p>You want to <em>maximize</em> your total energy boost by drinking one energy drink <em>per hour</em>. However, if you want to switch from consuming one energy drink to the other, you need to wait for <em>one hour</em> to cleanse your system (meaning you won't get any energy boost in that hour).</p>
|
||||
|
||||
<p>Return the <strong>maximum</strong> total energy boost you can gain in the next <code>n</code> hours.</p>
|
||||
|
||||
<p><strong>Note</strong> that you can start consuming <em>either</em> of the two energy drinks.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> energyDrinkA<span class="example-io"> = [1,3,1], </span>energyDrinkB<span class="example-io"> = [3,1,1]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">5</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>To gain an energy boost of 5, drink only the energy drink A (or only B).</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> energyDrinkA<span class="example-io"> = [4,1,1], </span>energyDrinkB<span class="example-io"> = [1,1,3]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">7</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>To gain an energy boost of 7:</p>
|
||||
|
||||
<ul>
|
||||
<li>Drink the energy drink A for the first hour.</li>
|
||||
<li>Switch to the energy drink B and we lose the energy boost of the second hour.</li>
|
||||
<li>Gain the energy boost of the drink B in the third hour.</li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>n == energyDrinkA.length == energyDrinkB.length</code></li>
|
||||
<li><code>3 <= n <= 10<sup>5</sup></code></li>
|
||||
<li><code>1 <= energyDrinkA[i], energyDrinkB[i] <= 10<sup>5</sup></code></li>
|
||||
</ul>
|
@@ -0,0 +1,53 @@
|
||||
<p>You are given a <code>m x n</code> 2D array <code>board</code> representing a chessboard, where <code>board[i][j]</code> represents the <strong>value</strong> of the cell <code>(i, j)</code>.</p>
|
||||
|
||||
<p>Rooks in the <strong>same</strong> row or column <strong>attack</strong> each other. You need to place <em>three</em> rooks on the chessboard such that the rooks <strong>do not</strong> <strong>attack</strong> each other.</p>
|
||||
|
||||
<p>Return the <strong>maximum</strong> sum of the cell <strong>values</strong> on which the rooks are placed.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">board = </span>[[-3,1,1,1],[-3,1,-3,1],[-3,2,1,1]]</p>
|
||||
|
||||
<p><strong>Output:</strong> 4</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/08/08/rooks2.png" style="width: 294px; height: 450px;" /></p>
|
||||
|
||||
<p>We can place the rooks in the cells <code>(0, 2)</code>, <code>(1, 3)</code>, and <code>(2, 1)</code> for a sum of <code>1 + 1 + 2 = 4</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">board = [[1,2,3],[4,5,6],[7,8,9]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">15</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>We can place the rooks in the cells <code>(0, 0)</code>, <code>(1, 1)</code>, and <code>(2, 2)</code> for a sum of <code>1 + 5 + 9 = 15</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">board = [[1,1,1],[1,1,1],[1,1,1]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>We can place the rooks in the cells <code>(0, 2)</code>, <code>(1, 1)</code>, and <code>(2, 0)</code> for a sum of <code>1 + 1 + 1 = 3</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>3 <= m == board.length <= 100</code></li>
|
||||
<li><code>3 <= n == board[i].length <= 100</code></li>
|
||||
<li><code>-10<sup>9</sup> <= board[i][j] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
@@ -0,0 +1,53 @@
|
||||
<p>You are given a <code>m x n</code> 2D array <code>board</code> representing a chessboard, where <code>board[i][j]</code> represents the <strong>value</strong> of the cell <code>(i, j)</code>.</p>
|
||||
|
||||
<p>Rooks in the <strong>same</strong> row or column <strong>attack</strong> each other. You need to place <em>three</em> rooks on the chessboard such that the rooks <strong>do not</strong> <strong>attack</strong> each other.</p>
|
||||
|
||||
<p>Return the <strong>maximum</strong> sum of the cell <strong>values</strong> on which the rooks are placed.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">board = </span>[[-3,1,1,1],[-3,1,-3,1],[-3,2,1,1]]</p>
|
||||
|
||||
<p><strong>Output:</strong> 4</p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p><img alt="" src="https://assets.leetcode.com/uploads/2024/08/08/rooks2.png" style="width: 294px; height: 450px;" /></p>
|
||||
|
||||
<p>We can place the rooks in the cells <code>(0, 2)</code>, <code>(1, 3)</code>, and <code>(2, 1)</code> for a sum of <code>1 + 1 + 2 = 4</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">board = [[1,2,3],[4,5,6],[7,8,9]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">15</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>We can place the rooks in the cells <code>(0, 0)</code>, <code>(1, 1)</code>, and <code>(2, 2)</code> for a sum of <code>1 + 5 + 9 = 15</code>.</p>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 3:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">board = [[1,1,1],[1,1,1],[1,1,1]]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<p>We can place the rooks in the cells <code>(0, 2)</code>, <code>(1, 1)</code>, and <code>(2, 0)</code> for a sum of <code>1 + 1 + 1 = 3</code>.</p>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>3 <= m == board.length <= 500</code></li>
|
||||
<li><code>3 <= n == board[i].length <= 500</code></li>
|
||||
<li><code>-10<sup>9</sup> <= board[i][j] <= 10<sup>9</sup></code></li>
|
||||
</ul>
|
161
leetcode/problem/snake-in-matrix.html
Normal file
161
leetcode/problem/snake-in-matrix.html
Normal file
@@ -0,0 +1,161 @@
|
||||
<p>There is a snake in an <code>n x n</code> matrix <code>grid</code> and can move in <strong>four possible directions</strong>. Each cell in the <code>grid</code> is identified by the position: <code>grid[i][j] = (i * n) + j</code>.</p>
|
||||
|
||||
<p>The snake starts at cell 0 and follows a sequence of commands.</p>
|
||||
|
||||
<p>You are given an integer <code>n</code> representing the size of the <code>grid</code> and an array of strings <code>commands</code> where each <code>command[i]</code> is either <code>"UP"</code>, <code>"RIGHT"</code>, <code>"DOWN"</code>, and <code>"LEFT"</code>. It's guaranteed that the snake will remain within the <code>grid</code> boundaries throughout its movement.</p>
|
||||
|
||||
<p>Return the position of the final cell where the snake ends up after executing <code>commands</code>.</p>
|
||||
|
||||
<p> </p>
|
||||
<p><strong class="example">Example 1:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 2, commands = ["RIGHT","DOWN"]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">3</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<div style="display:flex; gap: 12px;">
|
||||
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
|
||||
<tbody>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid red; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">0</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">2</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">3</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
|
||||
<tbody>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">0</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid red; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">2</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">3</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
|
||||
<tbody>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">0</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">2</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid red; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">3</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<p><strong class="example">Example 2:</strong></p>
|
||||
|
||||
<div class="example-block">
|
||||
<p><strong>Input:</strong> <span class="example-io">n = 3, commands = ["DOWN","RIGHT","UP"]</span></p>
|
||||
|
||||
<p><strong>Output:</strong> <span class="example-io">1</span></p>
|
||||
|
||||
<p><strong>Explanation:</strong></p>
|
||||
|
||||
<div style="display:flex; gap: 12px;">
|
||||
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
|
||||
<tbody>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid red; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">0</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">1</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">2</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">3</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">4</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">5</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">6</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">7</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">8</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
|
||||
<tbody>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">0</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">1</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">2</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid red; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">3</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">4</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">5</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">6</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">7</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">8</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
|
||||
<tbody>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">0</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">1</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">2</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">3</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid red; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">4</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">5</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">6</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">7</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">8</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;">
|
||||
<tbody>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">0</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid red; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">1</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">2</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">3</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">4</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #b30000; --darkreader-inline-border-right: #b30000; --darkreader-inline-border-bottom: #b30000; --darkreader-inline-border-left: #b30000;">5</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">6</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">7</td>
|
||||
<td data-darkreader-inline-border-bottom="" data-darkreader-inline-border-left="" data-darkreader-inline-border-right="" data-darkreader-inline-border-top="" style="padding: 5px 10px; border: 1px solid black; --darkreader-inline-border-top: #8c8273; --darkreader-inline-border-right: #8c8273; --darkreader-inline-border-bottom: #8c8273; --darkreader-inline-border-left: #8c8273;">8</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<p> </p>
|
||||
<p><strong>Constraints:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>2 <= n <= 10</code></li>
|
||||
<li><code>1 <= commands.length <= 100</code></li>
|
||||
<li><code>commands</code> consists only of <code>"UP"</code>, <code>"RIGHT"</code>, <code>"DOWN"</code>, and <code>"LEFT"</code>.</li>
|
||||
<li>The input is generated such the snake will not move outside of the boundaries.</li>
|
||||
</ul>
|
Reference in New Issue
Block a user