1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-02 05:13:29 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
This commit is contained in:
2022-10-26 20:38:53 +08:00
parent 396e839079
commit 193158abb0
25 changed files with 14351 additions and 12051 deletions

View File

@@ -0,0 +1,51 @@
<p>You are given two positive integer arrays <code>nums</code> and <code>target</code>, of the same length.</p>
<p>In one operation, you can choose any two <strong>distinct</strong> indices <code>i</code> and <code>j</code> where <code>0 &lt;= i, j &lt; nums.length</code> and:</p>
<ul>
<li>set <code>nums[i] = nums[i] + 2</code> and</li>
<li>set <code>nums[j] = nums[j] - 2</code>.</li>
</ul>
<p>Two arrays are considered to be <strong>similar</strong> if the frequency of each element is the same.</p>
<p>Return <em>the minimum number of operations required to make </em><code>nums</code><em> similar to </em><code>target</code>. The test cases are generated such that <code>nums</code> can always be similar to <code>target</code>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [8,12,6], target = [2,14,10]
<strong>Output:</strong> 2
<strong>Explanation:</strong> It is possible to make nums similar to target in two operations:
- Choose i = 0 and j = 2, nums = [10,12,4].
- Choose i = 1 and j = 2, nums = [10,14,2].
It can be shown that 2 is the minimum number of operations needed.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,5], target = [4,1,3]
<strong>Output:</strong> 1
<strong>Explanation:</strong> We can make nums similar to target in one operation:
- Choose i = 1 and j = 2, nums = [1,4,3].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,1,1,1,1], target = [1,1,1,1,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> The array nums is already similiar to target.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == nums.length == target.length</code></li>
<li><code>1 &lt;= n &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= nums[i], target[i] &lt;= 10<sup>6</sup></code></li>
<li>It is possible to make <code>nums</code> similar to <code>target</code>.</li>
</ul>

View File

@@ -0,0 +1,42 @@
<p>You are given two <strong>0-indexed</strong> arrays <code>nums</code> and <code>cost</code> consisting each of <code>n</code> <strong>positive</strong> integers.</p>
<p>You can do the following operation <strong>any</strong> number of times:</p>
<ul>
<li>Increase or decrease <strong>any</strong> element of the array <code>nums</code> by <code>1</code>.</li>
</ul>
<p>The cost of doing one operation on the <code>i<sup>th</sup></code> element is <code>cost[i]</code>.</p>
<p>Return <em>the <strong>minimum</strong> total cost such that all the elements of the array </em><code>nums</code><em> become <strong>equal</strong></em>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,2], cost = [2,3,1,14]
<strong>Output:</strong> 8
<strong>Explanation:</strong> We can make all the elements equal to 2 in the following way:
- Increase the 0<sup>th</sup> element one time. The cost is 2.
- Decrease the 1<sup><span style="font-size: 10.8333px;">st</span></sup> element one time. The cost is 3.
- Decrease the 2<sup>nd</sup> element three times. The cost is 1 + 1 + 1 = 3.
The total cost is 2 + 3 + 3 = 8.
It can be shown that we cannot make the array equal with a smaller cost.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,2,2,2,2], cost = [4,2,8,1,3]
<strong>Output:</strong> 0
<strong>Explanation:</strong> All the elements are already equal, so no operations are needed.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == nums.length == cost.length</code></li>
<li><code>1 &lt;= n &lt;= 10<sup>5</sup></code></li>
<li><code>1 &lt;= nums[i], cost[i] &lt;= 10<sup>6</sup></code></li>
</ul>

View File

@@ -0,0 +1,48 @@
<p>You are given two arrays of strings that represent two inclusive events that happened <strong>on the same day</strong>, <code>event1</code> and <code>event2</code>, where:</p>
<ul>
<li><code>event1 = [startTime<sub>1</sub>, endTime<sub>1</sub>]</code> and</li>
<li><code>event2 = [startTime<sub>2</sub>, endTime<sub>2</sub>]</code>.</li>
</ul>
<p>Event times are valid 24 hours format in the form of <code>HH:MM</code>.</p>
<p>A <strong>conflict</strong> happens when two events have some non-empty intersection (i.e., some moment is common to both events).</p>
<p>Return <code>true</code><em> if there is a conflict between two events. Otherwise, return </em><code>false</code>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> event1 = [&quot;01:15&quot;,&quot;02:00&quot;], event2 = [&quot;02:00&quot;,&quot;03:00&quot;]
<strong>Output:</strong> true
<strong>Explanation:</strong> The two events intersect at time 2:00.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> event1 = [&quot;01:00&quot;,&quot;02:00&quot;], event2 = [&quot;01:20&quot;,&quot;03:00&quot;]
<strong>Output:</strong> true
<strong>Explanation:</strong> The two events intersect starting from 01:20 to 02:00.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> event1 = [&quot;10:00&quot;,&quot;11:00&quot;], event2 = [&quot;14:00&quot;,&quot;15:00&quot;]
<strong>Output:</strong> false
<strong>Explanation:</strong> The two events do not intersect.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>evnet1.length == event2.length == 2.</code></li>
<li><code>event1[i].length == event2[i].length == 5</code></li>
<li><code>startTime<sub>1</sub> &lt;= endTime<sub>1</sub></code></li>
<li><code>startTime<sub>2</sub> &lt;= endTime<sub>2</sub></code></li>
<li>All the event times follow the <code>HH:MM</code> format.</li>
</ul>

View File

@@ -0,0 +1,34 @@
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the number of <strong>subarrays</strong> of </em><code>nums</code><em> where the greatest common divisor of the subarray&#39;s elements is </em><code>k</code>.</p>
<p>A <strong>subarray</strong> is a contiguous non-empty sequence of elements within an array.</p>
<p>The <strong>greatest common divisor of an array</strong> is the largest integer that evenly divides all the array elements.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [9,3,1,2,6,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarrays of nums where 3 is the greatest common divisor of all the subarray&#39;s elements are:
- [9,<u><strong>3</strong></u>,1,2,6,3]
- [9,3,1,2,6,<u><strong>3</strong></u>]
- [<u><strong>9,3</strong></u>,1,2,6,3]
- [9,3,1,2,<u><strong>6,3</strong></u>]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [4], k = 7
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are no subarrays of nums where 7 is the greatest common divisor of all the subarray&#39;s elements.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 1000</code></li>
<li><code>1 &lt;= nums[i], k &lt;= 10<sup>9</sup></code></li>
</ul>