<p>You are given a string <code>s</code> of <strong>even length</strong> consisting of digits from <code>0</code> to <code>9</code>, and two integers <code>a</code> and <code>b</code>.</p>
<p>You can apply either of the following two operations any number of times and in any order on <code>s</code>:</p>
<ul>
<li>Add <code>a</code> to all odd indices of <code>s</code><strong>(0-indexed)</strong>. Digits post <code>9</code> are cycled back to <code>0</code>. For example, if <code>s = "3456"</code> and <code>a = 5</code>, <code>s</code> becomes <code>"3951"</code>.</li>
<li>Rotate <code>s</code> to the right by <code>b</code> positions. For example, if <code>s = "3456"</code> and <code>b = 1</code>, <code>s</code> becomes <code>"6345"</code>.</li>
</ul>
<p>Return <em>the <strong>lexicographically smallest</strong> string you can obtain by applying the above operations any number of times on</em><code>s</code>.</p>
<p>A string <code>a</code> is lexicographically smaller than a string <code>b</code> (of the same length) if in the first position where <code>a</code> and <code>b</code> differ, string <code>a</code> has a letter that appears earlier in the alphabet than the corresponding letter in <code>b</code>. For example, <code>"0158"</code> is lexicographically smaller than <code>"0190"</code> because the first position they differ is at the third letter, and <code>'5'</code> comes before <code>'9'</code>.</p>