<p>A city is represented as a <strong>bi-directional connected</strong> graph with <code>n</code> vertices where each vertex is labeled from <code>1</code> to <code>n</code> (<strong>inclusive</strong>). The edges in the graph are represented as a 2D integer array <code>edges</code>, where each <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>]</code> denotes a bi-directional edge between vertex <code>u<sub>i</sub></code> and vertex <code>v<sub>i</sub></code>. Every vertex pair is connected by <strong>at most one</strong> edge, and no vertex has an edge to itself. The time taken to traverse any edge is <code>time</code> minutes.</p>
<p>Each vertex has a traffic signal which changes its color from <strong>green</strong> to <strong>red</strong> and vice versa every <code>change</code> minutes. All signals change <strong>at the same time</strong>. You can enter a vertex at <strong>any time</strong>, but can leave a vertex <strong>only when the signal is green</strong>. You <strong>cannot wait </strong>at a vertex if the signal is <strong>green</strong>.</p>
<p>The <strong>second minimum value</strong> is defined as the smallest value<strong> strictly larger </strong>than the minimum value.</p>
<ul>
<li>For example the second minimum value of <code>[2, 3, 4]</code> is <code>3</code>, and the second minimum value of <code>[2, 2, 4]</code> is <code>4</code>.</li>
</ul>
<p>Given <code>n</code>, <code>edges</code>, <code>time</code>, and <code>change</code>, return <em>the <strong>second minimum time</strong> it will take to go from vertex </em><code>1</code><em> to vertex </em><code>n</code>.</p>
<p><strong>Notes:</strong></p>
<ul>
<li>You can go through any vertex <strong>any</strong> number of times, <strong>including</strong><code>1</code> and <code>n</code>.</li>
<li>You can assume that when the journey <strong>starts</strong>, all signals have just turned <strong>green</strong>.</li>