<p>You are given an integer array <code>nums</code>. We call a subset of <code>nums</code><strong>good</strong> if its product can be represented as a product of one or more <strong>distinct prime</strong> numbers.</p>
<ul>
<li>For example, if <code>nums = [1, 2, 3, 4]</code>:
<ul>
<li><code>[2, 3]</code>, <code>[1, 2, 3]</code>, and <code>[1, 3]</code> are <strong>good</strong> subsets with products <code>6 = 2*3</code>, <code>6 = 2*3</code>, and <code>3 = 3</code> respectively.</li>
<li><code>[1, 4]</code> and <code>[4]</code> are not <strong>good</strong> subsets with products <code>4 = 2*2</code> and <code>4 = 2*2</code> respectively.</li>
</ul>
</li>
</ul>
<p>Return <em>the number of different <strong>good</strong> subsets in </em><code>nums</code><em><strong>modulo</strong></em><code>10<sup>9</sup> + 7</code>.</p>
<p>A <strong>subset</strong> of <code>nums</code> is any array that can be obtained by deleting some (possibly none or all) elements from <code>nums</code>. Two subsets are different if and only if the chosen indices to delete are different.</p>