<p>You are given an <code>m x n</code> integer matrix <code>grid</code> where each cell is either <code>0</code> (empty) or <code>1</code> (obstacle). You can move up, down, left, or right from and to an empty cell in <strong>one step</strong>.</p>
<p>Return <em>the minimum number of <strong>steps</strong> to walk from the upper left corner </em><code>(0, 0)</code><em> to the lower right corner </em><code>(m - 1, n - 1)</code><em> given that you can eliminate <strong>at most</strong></em><code>k</code><em> obstacles</em>. If it is not possible to find such walk return <code>-1</code>.</p>
<strong>Input:</strong> grid = [[0,0,0],[1,1,0],[0,0,0],[0,1,1],[0,0,0]], k = 1
<strong>Output:</strong> 6
<strong>Explanation:</strong>
The shortest path without eliminating any obstacle is 10.
The shortest path with one obstacle elimination at position (3,2) is 6. Such path is (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -><strong>(3,2)</strong> -> (4,2).