<p>You are given an undirected graph (the <strong>"original graph"</strong>) with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>. You decide to <strong>subdivide</strong> each edge in the graph into a chain of nodes, with the number of new nodes varying between each edge.</p>
<p>The graph is given as a 2D array of <code>edges</code> where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, cnt<sub>i</sub>]</code> indicates that there is an edge between nodes <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> in the original graph, and <code>cnt<sub>i</sub></code> is the total number of new nodes that you will <strong>subdivide</strong> the edge into. Note that <code>cnt<sub>i</sub> == 0</code> means you will not subdivide the edge.</p>
<p>To <strong>subdivide</strong> the edge <code>[u<sub>i</sub>, v<sub>i</sub>]</code>, replace it with <code>(cnt<sub>i</sub> + 1)</code> new edges and <code>cnt<sub>i</sub></code> new nodes. The new nodes are <code>x<sub>1</sub></code>, <code>x<sub>2</sub></code>, ..., <code>x<sub>cnt<sub>i</sub></sub></code>, and the new edges are <code>[u<sub>i</sub>, x<sub>1</sub>]</code>, <code>[x<sub>1</sub>, x<sub>2</sub>]</code>, <code>[x<sub>2</sub>, x<sub>3</sub>]</code>, ..., <code>[x<sub>cnt<sub>i</sub>-1</sub>, x<sub>cnt<sub>i</sub></sub>]</code>, <code>[x<sub>cnt<sub>i</sub></sub>, v<sub>i</sub>]</code>.</p>
<p>In this <strong>new graph</strong>, you want to know how many nodes are <strong>reachable</strong> from the node <code>0</code>, where a node is <strong>reachable</strong> if the distance is <code>maxMoves</code> or less.</p>
<p>Given the original graph and <code>maxMoves</code>, return <em>the number of nodes that are <strong>reachable</strong> from node </em><code>0</code><em> in the new graph</em>.</p>