<p>Given a weighted undirected connected graph with <code>n</code> vertices numbered from <code>0</code> to <code>n - 1</code>, and an array <code>edges</code> where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>, weight<sub>i</sub>]</code> represents a bidirectional and weighted edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code>. A minimum spanning tree (MST) is a subset of the graph's edges that connects all vertices without cycles and with the minimum possible total edge weight.</p>
<p>Find <em>all the critical and pseudo-critical edges in the given graph's minimum spanning tree (MST)</em>. An MST edge whose deletion from the graph would cause the MST weight to increase is called a <em>critical edge</em>. On the other hand, a pseudo-critical edge is that which can appear in some MSTs but not all.</p>
<p>Note that you can return the indices of the edges in any order.</p>
Notice that the two edges 0 and 1 appear in all MSTs, therefore they are critical edges, so we return them in the first list of the output.
The edges 2, 3, 4, and 5 are only part of some MSTs, therefore they are considered pseudo-critical edges. We add them to the second list of the output.
<strong>Input:</strong> n = 4, edges = [[0,1,1],[1,2,1],[2,3,1],[0,3,1]]
<strong>Output:</strong> [[],[0,1,2,3]]
<strong>Explanation:</strong> We can observe that since all 4 edges have equal weight, choosing any 3 edges from the given 4 will yield an MST. Therefore all 4 edges are pseudo-critical.