2022-03-27 18:35:17 +08:00
< p > The < b > Fibonacci numbers< / b > , commonly denoted < code > F(n)< / code > form a sequence, called the < b > Fibonacci sequence< / b > , such that each number is the sum of the two preceding ones, starting from < code > 0< / code > and < code > 1< / code > . That is,< / p >
< pre >
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
< / pre >
< p > Given < code > n< / code > , calculate < code > F(n)< / code > .< / p >
< p > < / p >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 1:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
< strong > Input:< / strong > n = 2
< strong > Output:< / strong > 1
< strong > Explanation:< / strong > F(2) = F(1) + F(0) = 1 + 0 = 1.
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 2:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
< strong > Input:< / strong > n = 3
< strong > Output:< / strong > 2
< strong > Explanation:< / strong > F(3) = F(2) + F(1) = 1 + 1 = 2.
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 3:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
< strong > Input:< / strong > n = 4
< strong > Output:< / strong > 3
< strong > Explanation:< / strong > F(4) = F(3) + F(2) = 2 + 1 = 3.
< / pre >
< p > < / p >
< p > < strong > Constraints:< / strong > < / p >
< ul >
< li > < code > 0 < = n < = 30< / code > < / li >
< / ul >