2022-03-27 18:35:17 +08:00
|
|
|
<p>Given an integer <code>n</code>, return <em>the number of trailing zeroes in </em><code>n!</code>.</p>
|
|
|
|
|
|
|
|
<p>Note that <code>n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1</code>.</p>
|
|
|
|
|
|
|
|
<p> </p>
|
2023-12-09 18:42:21 +08:00
|
|
|
<p><strong class="example">Example 1:</strong></p>
|
2022-03-27 18:35:17 +08:00
|
|
|
|
|
|
|
<pre>
|
|
|
|
<strong>Input:</strong> n = 3
|
|
|
|
<strong>Output:</strong> 0
|
|
|
|
<strong>Explanation:</strong> 3! = 6, no trailing zero.
|
|
|
|
</pre>
|
|
|
|
|
2023-12-09 18:42:21 +08:00
|
|
|
<p><strong class="example">Example 2:</strong></p>
|
2022-03-27 18:35:17 +08:00
|
|
|
|
|
|
|
<pre>
|
|
|
|
<strong>Input:</strong> n = 5
|
|
|
|
<strong>Output:</strong> 1
|
|
|
|
<strong>Explanation:</strong> 5! = 120, one trailing zero.
|
|
|
|
</pre>
|
|
|
|
|
2023-12-09 18:42:21 +08:00
|
|
|
<p><strong class="example">Example 3:</strong></p>
|
2022-03-27 18:35:17 +08:00
|
|
|
|
|
|
|
<pre>
|
|
|
|
<strong>Input:</strong> n = 0
|
|
|
|
<strong>Output:</strong> 0
|
|
|
|
</pre>
|
|
|
|
|
|
|
|
<p> </p>
|
|
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
|
|
|
|
<ul>
|
|
|
|
<li><code>0 <= n <= 10<sup>4</sup></code></li>
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
<p> </p>
|
|
|
|
<p><strong>Follow up:</strong> Could you write a solution that works in logarithmic time complexity?</p>
|