<p>You are given an array of network towers <code>towers</code>, where <code>towers[i] = [x<sub>i</sub>, y<sub>i</sub>, q<sub>i</sub>]</code> denotes the <code>i<sup>th</sup></code> network tower with location <code>(x<sub>i</sub>, y<sub>i</sub>)</code> and quality factor <code>q<sub>i</sub></code>. All the coordinates are <strong>integral coordinates</strong> on the X-Y plane, and the distance between the two coordinates is the <strong>Euclidean distance</strong>.</p>
<p>You are also given an integer <code>radius</code> where a tower is <strong>reachable</strong> if the distance is <strong>less than or equal to</strong><code>radius</code>. Outside that distance, the signal becomes garbled, and the tower is <strong>not reachable</strong>.</p>
<p>The signal quality of the <code>i<sup>th</sup></code> tower at a coordinate <code>(x, y)</code> is calculated with the formula <code>⌊q<sub>i</sub> / (1 + d)⌋</code>, where <code>d</code> is the distance between the tower and the coordinate. The <strong>network quality</strong> at a coordinate is the sum of the signal qualities from all the <strong>reachable</strong> towers.</p>
<p>Return <em>the array </em><code>[c<sub>x</sub>, c<sub>y</sub>]</code><em> representing the <strong>integral</strong> coordinate </em><code>(c<sub>x</sub>, c<sub>y</sub>)</code><em> where the <strong>network quality</strong> is maximum. If there are multiple coordinates with the same <strong>network quality</strong>, return the lexicographically minimum <strong>non-negative</strong> coordinate.</em></p>
<p><strong>Note:</strong></p>
<ul>
<li>A coordinate <code>(x1, y1)</code> is lexicographically smaller than <code>(x2, y2)</code> if either:
<ul>
<li><code>x1 < x2</code>, or</li>
<li><code>x1 == x2</code> and <code>y1 < y2</code>.</li>
</ul>
</li>
<li><code>⌊val⌋</code> is the greatest integer less than or equal to <code>val</code> (the floor function).</li>