mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-11 02:58:13 +08:00
44 lines
1.8 KiB
HTML
44 lines
1.8 KiB
HTML
|
<p>You are given an integer array <code>nums</code> and an integer <code>k</code>. You are asked to distribute this array into <code>k</code> subsets of <strong>equal size</strong> such that there are no two equal elements in the same subset.</p>
|
|||
|
|
|||
|
<p>A subset's <strong>incompatibility</strong> is the difference between the maximum and minimum elements in that array.</p>
|
|||
|
|
|||
|
<p>Return <em>the <strong>minimum possible sum of incompatibilities</strong> of the </em><code>k</code> <em>subsets after distributing the array optimally, or return </em><code>-1</code><em> if it is not possible.</em></p>
|
|||
|
|
|||
|
<p>A subset is a group integers that appear in the array with no particular order.</p>
|
|||
|
|
|||
|
<p> </p>
|
|||
|
<p><strong>Example 1:</strong></p>
|
|||
|
|
|||
|
<pre>
|
|||
|
<strong>Input:</strong> nums = [1,2,1,4], k = 2
|
|||
|
<strong>Output:</strong> 4
|
|||
|
<strong>Explanation:</strong> The optimal distribution of subsets is [1,2] and [1,4].
|
|||
|
The incompatibility is (2-1) + (4-1) = 4.
|
|||
|
Note that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements.</pre>
|
|||
|
|
|||
|
<p><strong>Example 2:</strong></p>
|
|||
|
|
|||
|
<pre>
|
|||
|
<strong>Input:</strong> nums = [6,3,8,1,3,1,2,2], k = 4
|
|||
|
<strong>Output:</strong> 6
|
|||
|
<strong>Explanation:</strong> The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3].
|
|||
|
The incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6.
|
|||
|
</pre>
|
|||
|
|
|||
|
<p><strong>Example 3:</strong></p>
|
|||
|
|
|||
|
<pre>
|
|||
|
<strong>Input:</strong> nums = [5,3,3,6,3,3], k = 3
|
|||
|
<strong>Output:</strong> -1
|
|||
|
<strong>Explanation:</strong> It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.
|
|||
|
</pre>
|
|||
|
|
|||
|
<p> </p>
|
|||
|
<p><strong>Constraints:</strong></p>
|
|||
|
|
|||
|
<ul>
|
|||
|
<li><code>1 <= k <= nums.length <= 16</code></li>
|
|||
|
<li><code>nums.length</code> is divisible by <code>k</code></li>
|
|||
|
<li><code>1 <= nums[i] <= nums.length</code></li>
|
|||
|
</ul>
|