2023-10-05 03:40:12 +08:00
{
"data" : {
"question" : {
"questionId" : "3070" ,
"questionFrontendId" : "2887" ,
2023-12-09 18:42:21 +08:00
"categoryTitle" : "pandas" ,
2023-10-05 03:40:12 +08:00
"boundTopicId" : 2467496 ,
"title" : "Fill Missing Data" ,
"titleSlug" : "fill-missing-data" ,
2023-12-09 18:42:21 +08:00
"content" : "<pre>\nDataFrame <code>products</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| name | object |\n| quantity | int |\n| price | int |\n+-------------+--------+\n</pre>\n\n<p>Write a solution to fill in the missing value as <code><strong>0</strong></code> in the <code>quantity</code> column.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<pre>\n<strong class=\"example\">Example 1:</strong>\n<strong>Input:</strong>+-----------------+----------+-------+\n| name | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch | None | 135 |\n| WirelessEarbuds | None | 821 |\n| GolfClubs | 779 | 9319 |\n| Printer | 849 | 3051 |\n+-----------------+----------+-------+\n<strong>Output:\n</strong>+-----------------+----------+-------+\n| name | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch | 0 | 135 |\n| WirelessEarbuds | 0 | 821 |\n| GolfClubs | 779 | 9319 |\n| Printer | 849 | 3051 |\n+-----------------+----------+-------+\n<strong>Explanation:</strong> \nThe quantity for Wristwatch and WirelessEarbuds are filled by 0.</pre>\n" ,
"translatedTitle" : "填充缺失值" ,
"translatedContent" : "<pre>\nDataFrame <code>products</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| name | object |\n| quantity | int |\n| price | int |\n+-------------+--------+\n</pre>\n\n<p>编写一个解决方案,在 <code>quantity</code> 列中将缺失的值填充为 <code><strong>0</strong></code>。</p>\n\n<p>返回结果如下示例所示。</p>\n\n<p> </p>\n<strong class=\"example\">示例 1: </strong>\n\n<pre>\n<strong>输入:\n</strong>+-----------------+----------+-------+\n| name | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch | 32 | 135 |\n| WirelessEarbuds | None | 821 |\n| GolfClubs | None | 9319 |\n| Printer | 849 | 3051 |\n+-----------------+----------+-------+\n<strong>输出:\n</strong>+-----------------+----------+-------+\n| name | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch | 32 | 135 |\n| WirelessEarbuds | 0 | 821 |\n| GolfClubs | 0 | 9319 |\n| Printer | 849 | 3051 |\n+-----------------+----------+-------+\n<b>解释:</b>\nToaster 和 Headphones 的数量被填充为 0。</pre>\n" ,
2023-10-05 03:40:12 +08:00
"isPaidOnly" : false ,
"difficulty" : "Easy" ,
"likes" : 0 ,
"dislikes" : 0 ,
"isLiked" : null ,
"similarQuestions" : "[]" ,
"contributors" : [ ] ,
"langToValidPlayground" : "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}" ,
"topicTags" : [ ] ,
"companyTagStats" : null ,
"codeSnippets" : [
{
"lang" : "Pandas" ,
"langSlug" : "pythondata" ,
"code" : "import pandas as pd\n\ndef fillMissingValues(products: pd.DataFrame) -> pd.DataFrame:\n " ,
"__typename" : "CodeSnippetNode"
}
] ,
2023-12-09 19:57:46 +08:00
"stats" : "{\"totalAccepted\": \"1.3K\", \"totalSubmission\": \"1.8K\", \"totalAcceptedRaw\": 1277, \"totalSubmissionRaw\": 1822, \"acRate\": \"70.1%\"}" ,
2023-10-05 03:40:12 +08:00
"hints" : [
"Consider using a build-in function in pandas library to fill the missing values of specified columns."
] ,
"solution" : null ,
"status" : null ,
2023-12-09 18:42:21 +08:00
"sampleTestCase" : "{\"headers\":{\"products\":[\"name\",\"quantity\",\"price\"]},\"rows\":{\"products\":[[\"Wristwatch\",null,135],[\"WirelessEarbuds\",null,821],[\"GolfClubs\",779,9319],[\"Printer\",849,3051]]}}" ,
2023-10-05 03:40:12 +08:00
"metaData" : "{\n \"pythondata\": [\n \"products = pd.DataFrame([], columns=['name', 'quantity', 'price']).astype({'name':'object', 'quantity':'Int64', 'price':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"fillMissingValues\",\n \"languages\": [\n \"pythondata\"\n ]\n}" ,
"judgerAvailable" : true ,
"judgeType" : "large" ,
"mysqlSchemas" : [ ] ,
"enableRunCode" : true ,
"envInfo" : "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}" ,
"book" : null ,
"isSubscribed" : false ,
"isDailyQuestion" : false ,
"dailyRecordStatus" : null ,
"editorType" : "CKEDITOR" ,
"ugcQuestionId" : null ,
"style" : "LEETCODE" ,
2023-12-09 18:42:21 +08:00
"exampleTestcases" : "{\"headers\":{\"products\":[\"name\",\"quantity\",\"price\"]},\"rows\":{\"products\":[[\"Wristwatch\",null,135],[\"WirelessEarbuds\",null,821],[\"GolfClubs\",779,9319],[\"Printer\",849,3051]]}}" ,
2023-10-05 03:40:12 +08:00
"__typename" : "QuestionNode"
}
}
}