1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 02:58:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/originData/fill-missing-data.json

55 lines
5.7 KiB
JSON
Raw Normal View History

2023-10-05 03:40:12 +08:00
{
"data": {
"question": {
"questionId": "3070",
"questionFrontendId": "2887",
2023-12-09 18:42:21 +08:00
"categoryTitle": "pandas",
2023-10-05 03:40:12 +08:00
"boundTopicId": 2467496,
"title": "Fill Missing Data",
"titleSlug": "fill-missing-data",
2023-12-09 18:42:21 +08:00
"content": "<pre>\nDataFrame <code>products</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| name | object |\n| quantity | int |\n| price | int |\n+-------------+--------+\n</pre>\n\n<p>Write a solution to fill in the missing value as <code><strong>0</strong></code> in the <code>quantity</code> column.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<pre>\n<strong class=\"example\">Example 1:</strong>\n<strong>Input:</strong>+-----------------+----------+-------+\n| name | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch | None | 135 |\n| WirelessEarbuds | None | 821 |\n| GolfClubs | 779 | 9319 |\n| Printer | 849 | 3051 |\n+-----------------+----------+-------+\n<strong>Output:\n</strong>+-----------------+----------+-------+\n| name | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch | 0 | 135 |\n| WirelessEarbuds | 0 | 821 |\n| GolfClubs | 779 | 9319 |\n| Printer | 849 | 3051 |\n+-----------------+----------+-------+\n<strong>Explanation:</strong> \nThe quantity for Wristwatch and WirelessEarbuds are filled by 0.</pre>\n",
"translatedTitle": "填充缺失值",
"translatedContent": "<pre>\nDataFrame <code>products</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| name | object |\n| quantity | int |\n| price | int |\n+-------------+--------+\n</pre>\n\n<p>编写一个解决方案,在 <code>quantity</code> 列中将缺失的值填充为&nbsp;<code><strong>0</strong></code>。</p>\n\n<p>返回结果如下示例所示。</p>\n\n<p>&nbsp;</p>\n<strong class=\"example\">示例 1</strong>\n\n<pre>\n<strong>输入:\n</strong>+-----------------+----------+-------+\n| name | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch | 32 | 135 |\n| WirelessEarbuds | None | 821 |\n| GolfClubs | None | 9319 |\n| Printer | 849 | 3051 |\n+-----------------+----------+-------+\n<strong>输出:\n</strong>+-----------------+----------+-------+\n| name | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch | 32 | 135 |\n| WirelessEarbuds | 0 | 821 |\n| GolfClubs | 0 | 9319 |\n| Printer | 849 | 3051 |\n+-----------------+----------+-------+\n<b>解释:</b>\nToaster 和 Headphones 的数量被填充为 0。</pre>\n",
2023-10-05 03:40:12 +08:00
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 0,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef fillMissingValues(products: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
}
],
2023-12-09 19:57:46 +08:00
"stats": "{\"totalAccepted\": \"1.3K\", \"totalSubmission\": \"1.8K\", \"totalAcceptedRaw\": 1277, \"totalSubmissionRaw\": 1822, \"acRate\": \"70.1%\"}",
2023-10-05 03:40:12 +08:00
"hints": [
"Consider using a build-in function in pandas library to fill the missing values of specified columns."
],
"solution": null,
"status": null,
2023-12-09 18:42:21 +08:00
"sampleTestCase": "{\"headers\":{\"products\":[\"name\",\"quantity\",\"price\"]},\"rows\":{\"products\":[[\"Wristwatch\",null,135],[\"WirelessEarbuds\",null,821],[\"GolfClubs\",779,9319],[\"Printer\",849,3051]]}}",
2023-10-05 03:40:12 +08:00
"metaData": "{\n \"pythondata\": [\n \"products = pd.DataFrame([], columns=['name', 'quantity', 'price']).astype({'name':'object', 'quantity':'Int64', 'price':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"fillMissingValues\",\n \"languages\": [\n \"pythondata\"\n ]\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"envInfo": "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
2023-12-09 18:42:21 +08:00
"exampleTestcases": "{\"headers\":{\"products\":[\"name\",\"quantity\",\"price\"]},\"rows\":{\"products\":[[\"Wristwatch\",null,135],[\"WirelessEarbuds\",null,821],[\"GolfClubs\",779,9319],[\"Printer\",849,3051]]}}",
2023-10-05 03:40:12 +08:00
"__typename": "QuestionNode"
}
}
}