<p>You have <code>n</code> robots. You are given two <strong>0-indexed</strong> integer arrays, <code>chargeTimes</code> and <code>runningCosts</code>, both of length <code>n</code>. The <code>i<sup>th</sup></code> robot costs <code>chargeTimes[i]</code> units to charge and costs <code>runningCosts[i]</code> units to run. You are also given an integer <code>budget</code>.</p>
<p>The <strong>total cost</strong> of running <code>k</code> chosen robots is equal to <code>max(chargeTimes) + k * sum(runningCosts)</code>, where <code>max(chargeTimes)</code> is the largest charge cost among the <code>k</code> robots and <code>sum(runningCosts)</code> is the sum of running costs among the <code>k</code> robots.</p>
<p>Return<em> the <strong>maximum</strong> number of <strong>consecutive</strong> robots you can run such that the total cost <strong>does not</strong> exceed </em><code>budget</code>.</p>