2022-03-27 18:35:17 +08:00
< p > Given an integer array < code > nums< / code > , return < code > true< / code > < em > if there exists a triple of indices < / em > < code > (i, j, k)< / code > < em > such that < / em > < code > i < j < k< / code > < em > and < / em > < code > nums[i] < nums[j] < nums[k]< / code > . If no such indices exists, return < code > false< / code > .< / p >
< p > < / p >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 1:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
< strong > Input:< / strong > nums = [1,2,3,4,5]
< strong > Output:< / strong > true
< strong > Explanation:< / strong > Any triplet where i < j < k is valid.
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 2:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
< strong > Input:< / strong > nums = [5,4,3,2,1]
< strong > Output:< / strong > false
< strong > Explanation:< / strong > No triplet exists.
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 3:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
< strong > Input:< / strong > nums = [2,1,5,0,4,6]
< strong > Output:< / strong > true
< strong > Explanation:< / strong > The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
< / pre >
< p > < / p >
< p > < strong > Constraints:< / strong > < / p >
< ul >
< li > < code > 1 < = nums.length < = 5 * 10< sup > 5< / sup > < / code > < / li >
< li > < code > -2< sup > 31< / sup > < = nums[i] < = 2< sup > 31< / sup > - 1< / code > < / li >
< / ul >
< p > < / p >
< strong > Follow up:< / strong > Could you implement a solution that runs in < code > O(n)< / code > time complexity and < code > O(1)< / code > space complexity?