1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 02:58:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode/originData/smallest-missing-genetic-value-in-each-subtree.json

186 lines
19 KiB
JSON
Raw Normal View History

2022-03-27 18:27:43 +08:00
{
"data": {
"question": {
"questionId": "2131",
"questionFrontendId": "2003",
"boundTopicId": null,
"title": "Smallest Missing Genetic Value in Each Subtree",
"titleSlug": "smallest-missing-genetic-value-in-each-subtree",
2023-12-09 18:42:21 +08:00
"content": "<p>There is a <strong>family tree</strong> rooted at <code>0</code> consisting of <code>n</code> nodes numbered <code>0</code> to <code>n - 1</code>. You are given a <strong>0-indexed</strong> integer array <code>parents</code>, where <code>parents[i]</code> is the parent for node <code>i</code>. Since node <code>0</code> is the <strong>root</strong>, <code>parents[0] == -1</code>.</p>\n\n<p>There are <code>10<sup>5</sup></code> genetic values, each represented by an integer in the <strong>inclusive</strong> range <code>[1, 10<sup>5</sup>]</code>. You are given a <strong>0-indexed</strong> integer array <code>nums</code>, where <code>nums[i]</code> is a <strong>distinct </strong>genetic value for node <code>i</code>.</p>\n\n<p>Return <em>an array </em><code>ans</code><em> of length </em><code>n</code><em> where </em><code>ans[i]</code><em> is</em> <em>the <strong>smallest</strong> genetic value that is <strong>missing</strong> from the subtree rooted at node</em> <code>i</code>.</p>\n\n<p>The <strong>subtree</strong> rooted at a node <code>x</code> contains node <code>x</code> and all of its <strong>descendant</strong> nodes.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2021/08/23/case-1.png\" style=\"width: 204px; height: 167px;\" />\n<pre>\n<strong>Input:</strong> parents = [-1,0,0,2], nums = [1,2,3,4]\n<strong>Output:</strong> [5,1,1,1]\n<strong>Explanation:</strong> The answer for each subtree is calculated as follows:\n- 0: The subtree contains nodes [0,1,2,3] with values [1,2,3,4]. 5 is the smallest missing value.\n- 1: The subtree contains only node 1 with value 2. 1 is the smallest missing value.\n- 2: The subtree contains nodes [2,3] with values [3,4]. 1 is the smallest missing value.\n- 3: The subtree contains only node 3 with value 4. 1 is the smallest missing value.\n</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2021/08/23/case-2.png\" style=\"width: 247px; height: 168px;\" />\n<pre>\n<strong>Input:</strong> parents = [-1,0,1,0,3,3], nums = [5,4,6,2,1,3]\n<strong>Output:</strong> [7,1,1,4,2,1]\n<strong>Explanation:</strong> The answer for each subtree is calculated as follows:\n- 0: The subtree contains nodes [0,1,2,3,4,5] with values [5,4,6,2,1,3]. 7 is the smallest missing value.\n- 1: The subtree contains nodes [1,2] with values [4,6]. 1 is the smallest missing value.\n- 2: The subtree contains only node 2 with value 6. 1 is the smallest missing value.\n- 3: The subtree contains nodes [3,4,5] with values [2,1,3]. 4 is the smallest missing value.\n- 4: The subtree contains only node 4 with value 1. 2 is the smallest missing value.\n- 5: The subtree contains only node 5 with value 3. 1 is the smallest missing value.\n</pre>\n\n<p><strong class=\"example\">Example 3:</strong></p>\n\n<pre>\n<strong>Input:</strong> parents = [-1,2,3,0,2,4,1], nums = [2,3,4,5,6,7,8]\n<strong>Output:</strong> [1,1,1,1,1,1,1]\n<strong>Explanation:</strong> The value 1 is missing from all the subtrees.\n</pre>\n\n<p>&nbsp;</p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>n == parents.length == nums.length</code></li>\n\t<li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li>\n\t<li><code>0 &lt;= parents[i] &lt;= n - 1</code> for <code>i != 0</code></li>\n\t<li><code>parents[0] == -1</code></li>\n\t<li><code>parents</code> represents a valid tree.</li>\n\t<li><code>1 &lt;= nums[i] &lt;= 10<sup>5</sup></code></li>\n\t<li>Each <code>nums[i]</code> is distinct.</li>\n</ul>\n",
2022-03-27 18:27:43 +08:00
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": false,
"difficulty": "Hard",
2023-12-09 18:42:21 +08:00
"likes": 431,
"dislikes": 21,
2022-03-27 18:27:43 +08:00
"isLiked": null,
"similarQuestions": "[]",
"exampleTestcases": "[-1,0,0,2]\n[1,2,3,4]\n[-1,0,1,0,3,3]\n[5,4,6,2,1,3]\n[-1,2,3,0,2,4,1]\n[2,3,4,5,6,7,8]",
"categoryTitle": "Algorithms",
"contributors": [],
"topicTags": [
{
"name": "Dynamic Programming",
"slug": "dynamic-programming",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Tree",
"slug": "tree",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Depth-First Search",
"slug": "depth-first-search",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Union Find",
"slug": "union-find",
"translatedName": null,
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "C++",
"langSlug": "cpp",
"code": "class Solution {\npublic:\n vector<int> smallestMissingValueSubtree(vector<int>& parents, vector<int>& nums) {\n \n }\n};",
"__typename": "CodeSnippetNode"
},
{
"lang": "Java",
"langSlug": "java",
"code": "class Solution {\n public int[] smallestMissingValueSubtree(int[] parents, int[] nums) {\n \n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Python",
"langSlug": "python",
"code": "class Solution(object):\n def smallestMissingValueSubtree(self, parents, nums):\n \"\"\"\n :type parents: List[int]\n :type nums: List[int]\n :rtype: List[int]\n \"\"\"\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "Python3",
"langSlug": "python3",
"code": "class Solution:\n def smallestMissingValueSubtree(self, parents: List[int], nums: List[int]) -> List[int]:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "C",
"langSlug": "c",
2023-12-09 18:42:21 +08:00
"code": "/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* smallestMissingValueSubtree(int* parents, int parentsSize, int* nums, int numsSize, int* returnSize) {\n \n}",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
"lang": "C#",
"langSlug": "csharp",
"code": "public class Solution {\n public int[] SmallestMissingValueSubtree(int[] parents, int[] nums) {\n \n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "JavaScript",
"langSlug": "javascript",
"code": "/**\n * @param {number[]} parents\n * @param {number[]} nums\n * @return {number[]}\n */\nvar smallestMissingValueSubtree = function(parents, nums) {\n \n};",
"__typename": "CodeSnippetNode"
},
{
2023-12-09 18:42:21 +08:00
"lang": "TypeScript",
"langSlug": "typescript",
"code": "function smallestMissingValueSubtree(parents: number[], nums: number[]): number[] {\n \n};",
"__typename": "CodeSnippetNode"
},
{
"lang": "PHP",
"langSlug": "php",
"code": "class Solution {\n\n /**\n * @param Integer[] $parents\n * @param Integer[] $nums\n * @return Integer[]\n */\n function smallestMissingValueSubtree($parents, $nums) {\n \n }\n}",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
"lang": "Swift",
"langSlug": "swift",
"code": "class Solution {\n func smallestMissingValueSubtree(_ parents: [Int], _ nums: [Int]) -> [Int] {\n \n }\n}",
"__typename": "CodeSnippetNode"
},
{
2023-12-09 18:42:21 +08:00
"lang": "Kotlin",
"langSlug": "kotlin",
"code": "class Solution {\n fun smallestMissingValueSubtree(parents: IntArray, nums: IntArray): IntArray {\n \n }\n}",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
2023-12-09 18:42:21 +08:00
"lang": "Dart",
"langSlug": "dart",
"code": "class Solution {\n List<int> smallestMissingValueSubtree(List<int> parents, List<int> nums) {\n \n }\n}",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
2023-12-09 18:42:21 +08:00
"lang": "Go",
"langSlug": "golang",
"code": "func smallestMissingValueSubtree(parents []int, nums []int) []int {\n \n}",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
2023-12-09 18:42:21 +08:00
"lang": "Ruby",
"langSlug": "ruby",
"code": "# @param {Integer[]} parents\n# @param {Integer[]} nums\n# @return {Integer[]}\ndef smallest_missing_value_subtree(parents, nums)\n \nend",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
2023-12-09 18:42:21 +08:00
"lang": "Scala",
"langSlug": "scala",
"code": "object Solution {\n def smallestMissingValueSubtree(parents: Array[Int], nums: Array[Int]): Array[Int] = {\n \n }\n}",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
2023-12-09 18:42:21 +08:00
"lang": "Rust",
"langSlug": "rust",
"code": "impl Solution {\n pub fn smallest_missing_value_subtree(parents: Vec<i32>, nums: Vec<i32>) -> Vec<i32> {\n \n }\n}",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
"lang": "Racket",
"langSlug": "racket",
2023-12-09 18:42:21 +08:00
"code": "(define/contract (smallest-missing-value-subtree parents nums)\n (-> (listof exact-integer?) (listof exact-integer?) (listof exact-integer?))\n )",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
},
{
"lang": "Erlang",
"langSlug": "erlang",
"code": "-spec smallest_missing_value_subtree(Parents :: [integer()], Nums :: [integer()]) -> [integer()].\nsmallest_missing_value_subtree(Parents, Nums) ->\n .",
"__typename": "CodeSnippetNode"
},
{
"lang": "Elixir",
"langSlug": "elixir",
2023-12-09 18:42:21 +08:00
"code": "defmodule Solution do\n @spec smallest_missing_value_subtree(parents :: [integer], nums :: [integer]) :: [integer]\n def smallest_missing_value_subtree(parents, nums) do\n \n end\nend",
2022-03-27 18:27:43 +08:00
"__typename": "CodeSnippetNode"
}
],
2023-12-09 18:42:21 +08:00
"stats": "{\"totalAccepted\": \"7.6K\", \"totalSubmission\": \"16.5K\", \"totalAcceptedRaw\": 7644, \"totalSubmissionRaw\": 16519, \"acRate\": \"46.3%\"}",
2022-03-27 18:27:43 +08:00
"hints": [
"If the subtree doesn't contain 1, then the missing value will always be 1.",
"What data structure allows us to dynamically update the values that are currently not present?"
],
"solution": null,
"status": null,
"sampleTestCase": "[-1,0,0,2]\n[1,2,3,4]",
"metaData": "{\n \"name\": \"smallestMissingValueSubtree\",\n \"params\": [\n {\n \"name\": \"parents\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"nums\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": true,
2023-12-09 18:42:21 +08:00
"envInfo": "{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 11 </code> using the latest C++ 20 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code>OpenJDK 17</code>. Java 8 features such as lambda expressions and stream API can be used. </p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 8.2</code> using the gnu11 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O1</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10\\\" target=\\\"_blank\\\">C# 10 with .NET 6 runtime</a></p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use 5.3.0 version of <a href=\\\"https://github.com/datastructures-js/priority-queue/tree/fb4fdb984834421279aeb081df7af624d17c2a03\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and 4.2.1 version of <a href=\\\"https://githu
2022-03-27 18:27:43 +08:00
"libraryUrl": null,
"adminUrl": null,
"challengeQuestion": null,
"__typename": "QuestionNode"
}
}
}