"content":"<p>Given the <code>root</code> of a binary tree, return <em>the lowest common ancestor of its deepest leaves</em>.</p>\n\n<p>Recall that:</p>\n\n<ul>\n\t<li>The node of a binary tree is a leaf if and only if it has no children</li>\n\t<li>The depth of the root of the tree is <code>0</code>. if the depth of a node is <code>d</code>, the depth of each of its children is <code>d + 1</code>.</li>\n\t<li>The lowest common ancestor of a set <code>S</code> of nodes, is the node <code>A</code> with the largest depth such that every node in <code>S</code> is in the subtree with root <code>A</code>.</li>\n</ul>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n<img alt=\"\" src=\"https://s3-lc-upload.s3.amazonaws.com/uploads/2018/07/01/sketch1.png\" style=\"width: 600px; height: 510px;\" />\n<pre>\n<strong>Input:</strong> root = [3,5,1,6,2,0,8,null,null,7,4]\n<strong>Output:</strong> [2,7,4]\n<strong>Explanation:</strong> We return the node with value 2, colored in yellow in the diagram.\nThe nodes coloured in blue are the deepest leaf-nodes of the tree.\nNote that nodes 6, 0, and 8 are also leaf nodes, but the depth of them is 2, but the depth of nodes 7 and 4 is 3.</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n\n<pre>\n<strong>Input:</strong> root = [1]\n<strong>Output:</strong> [1]\n<strong>Explanation:</strong> The root is the deepest node in the tree, and it's the lca of itself.\n</pre>\n\n<p><strong class=\"example\">Example 3:</strong></p>\n\n<pre>\n<strong>Input:</strong> root = [0,1,3,null,2]\n<strong>Output:</strong> [2]\n<strong>Explanation:</strong> The deepest leaf node in the tree is 2, the lca of one node is itself.\n</pre>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li>The number of nodes in the tree will be in the range <code>[1, 1000]</code>.</li>\n\t<li><code>0 <= Node.val <= 1000</code></li>\n\t<li>The values of the nodes in the tree are <strong>unique</strong>.</li>\n</ul>\n\n<p> </p>\n<p><strong>Note:</strong> This question is the same as 865: <a href=\"https://leetcode.com/problems/smallest-subtree-with-all-the-deepest-nodes/\" target=\"_blank\">https://leetcode.com/problems/smallest-subtree-with-all-the-deepest-nodes/</a></p>\n",
"similarQuestions":"[{\"title\": \"Lowest Common Ancestor of a Binary Tree IV\", \"titleSlug\": \"lowest-common-ancestor-of-a-binary-tree-iv\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]",
"code":"/**\n * Example:\n * var ti = TreeNode(5)\n * var v = ti.`val`\n * Definition for a binary tree node.\n * class TreeNode(var `val`: Int) {\n * var left: TreeNode? = null\n * var right: TreeNode? = null\n * }\n */\nclass Solution {\n fun lcaDeepestLeaves(root: TreeNode?): TreeNode? {\n \n }\n}",
"code":"/**\n * Definition for a binary tree node.\n * type TreeNode struct {\n * Val int\n * Left *TreeNode\n * Right *TreeNode\n * }\n */\nfunc lcaDeepestLeaves(root *TreeNode) *TreeNode {\n \n}",
"envInfo":"{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 11 </code> using the latest C++ 20 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code>OpenJDK 17</code>. Java 8 features such as lambda expressions and stream API can be used. </p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 8.2</code> using the gnu11 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O1</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10\\\" target=\\\"_blank\\\">C# 10 with .NET 6 runtime</a></p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use 5.3.0 version of <a href=\\\"https://github.com/datastructures-js/priority-queue/tree/fb4fdb984834421279aeb081df7af624d17c2a03\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and 4.2.1 version of <a href=\\\"https://githu