<p>You are given a <strong>0-indexed</strong><code>m x n</code> binary matrix <code>matrix</code> and an integer <code>numSelect</code>, which denotes the number of <strong>distinct</strong> columns you must select from <code>matrix</code>.</p>
<p>Let us consider <code>s = {c<sub>1</sub>, c<sub>2</sub>, ...., c<sub>numSelect</sub>}</code> as the set of columns selected by you. A row <code>row</code> is <strong>covered</strong> by <code>s</code> if:</p>
<li>For each cell <code>matrix[row][col]</code> (<code>0 <= col <= n - 1</code>) where <code>matrix[row][col] == 1</code>, <code>col</code> is present in <code>s</code> or,</li>
<li><strong>No cell</strong> in <code>row</code> has a value of <code>1</code>.</li>
<p>Return <em>the <strong>maximum</strong> number of rows that can be <strong>covered</strong> by a set of </em><code>numSelect</code><em> columns.</em></p>