2022-03-27 20:37:52 +08:00
< p > Given a < code > m x n< / code > matrix < code > grid< / code > which is sorted in non-increasing order both row-wise and column-wise, return < em > the number of < strong > negative< / strong > numbers in< / em > < code > grid< / code > .< / p >
< p > < / p >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 1:< / strong > < / p >
2022-03-27 20:37:52 +08:00
< pre >
< strong > Input:< / strong > grid = [[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]]
< strong > Output:< / strong > 8
< strong > Explanation:< / strong > There are 8 negatives number in the matrix.
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 2:< / strong > < / p >
2022-03-27 20:37:52 +08:00
< pre >
< strong > Input:< / strong > grid = [[3,2],[1,0]]
< strong > Output:< / strong > 0
< / pre >
< p > < / p >
< p > < strong > Constraints:< / strong > < / p >
< ul >
< li > < code > m == grid.length< / code > < / li >
< li > < code > n == grid[i].length< / code > < / li >
< li > < code > 1 < = m, n < = 100< / code > < / li >
< li > < code > -100 < = grid[i][j] < = 100< / code > < / li >
< / ul >
< p > < / p >
< strong > Follow up:< / strong > Could you find an < code > O(n + m)< / code > solution?