<p>There are <code>n</code> rings and each ring is either red, green, or blue. The rings are distributed <strong>across ten rods</strong> labeled from <code>0</code> to <code>9</code>.</p>
<p>You are given a string <code>rings</code> of length <code>2n</code> that describes the <code>n</code> rings that are placed onto the rods. Every two characters in <code>rings</code> forms a <strong>color-position pair</strong> that is used to describe each ring where:</p>
<ul>
<li>The <strong>first</strong> character of the <code>i<sup>th</sup></code> pair denotes the <code>i<sup>th</sup></code> ring's <strong>color</strong> (<code>'R'</code>, <code>'G'</code>, <code>'B'</code>).</li>
<li>The <strong>second</strong> character of the <code>i<sup>th</sup></code> pair denotes the <strong>rod</strong> that the <code>i<sup>th</sup></code> ring is placed on (<code>'0'</code> to <code>'9'</code>).</li>
</ul>
<p>For example, <code>"R3G2B1"</code> describes <code>n == 3</code> rings: a red ring placed onto the rod labeled 3, a green ring placed onto the rod labeled 2, and a blue ring placed onto the rod labeled 1.</p>
<p>Return <em>the number of rods that have <strong>all three colors</strong> of rings on them.</em></p>
Only one ring is given. Thus, no rods have all three colors.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>rings.length == 2 * n</code></li>
<li><code>1 <= n <= 100</code></li>
<li><code>rings[i]</code> where <code>i</code> is <strong>even</strong> is either <code>'R'</code>, <code>'G'</code>, or <code>'B'</code> (<strong>0-indexed</strong>).</li>
<li><code>rings[i]</code> where <code>i</code> is <strong>odd</strong> is a digit from <code>'0'</code> to <code>'9'</code> (<strong>0-indexed</strong>).</li>