<p>Given an integer <code>n</code>, you must transform it into <code>0</code> using the following operations any number of times:</p>
<ul>
<li>Change the rightmost (<code>0<sup>th</sup></code>) bit in the binary representation of <code>n</code>.</li>
<li>Change the <code>i<sup>th</sup></code> bit in the binary representation of <code>n</code> if the <code>(i-1)<sup>th</sup></code> bit is set to <code>1</code> and the <code>(i-2)<sup>th</sup></code> through <code>0<sup>th</sup></code> bits are set to <code>0</code>.</li>
</ul>
<p>Return <em>the minimum number of operations to transform </em><code>n</code><em> into </em><code>0</code><em>.</em></p>
<strong>Explanation:</strong> The binary representation of 6 is "110".
"<u>1</u>10" ->"<u>0</u>10" with the 2<sup>nd</sup> operation since the 1<sup>st</sup> bit is 1 and 0<sup>th</sup> through 0<sup>th</sup> bits are 0.
"01<u>0</u>" ->"01<u>1</u>" with the 1<sup>st</sup> operation.
"0<u>1</u>1" ->"0<u>0</u>1" with the 2<sup>nd</sup> operation since the 0<sup>th</sup> bit is 1.
"00<u>1</u>" ->"00<u>0</u>" with the 1<sup>st</sup> operation.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 10<sup>9</sup></code></li>