2023-10-05 03:40:12 +08:00
{
"data" : {
"question" : {
"questionId" : "3072" ,
2023-12-09 18:42:21 +08:00
"questionFrontendId" : "2889" ,
"categoryTitle" : "pandas" ,
2023-10-05 03:40:12 +08:00
"boundTopicId" : 2467493 ,
"title" : "Reshape Data: Pivot" ,
"titleSlug" : "reshape-data-pivot" ,
"content" : "<pre>\nDataFrame <code>weather</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| city | object |\n| month | object |\n| temperature | int |\n+-------------+--------+\n</pre>\n\n<p>Write a solution to <strong>pivot</strong> the data so that each row represents temperatures for a specific month, and each city is a separate column.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<pre>\n<strong class=\"example\">Example 1:</strong>\n<strong>Input:</strong>\n+--------------+----------+-------------+\n| city | month | temperature |\n+--------------+----------+-------------+\n| Jacksonville | January | 13 |\n| Jacksonville | February | 23 |\n| Jacksonville | March | 38 |\n| Jacksonville | April | 5 |\n| Jacksonville | May | 34 |\n| ElPaso | January | 20 |\n| ElPaso | February | 6 |\n| ElPaso | March | 26 |\n| ElPaso | April | 2 |\n| ElPaso | May | 43 |\n+--------------+----------+-------------+\n<strong>Output:</strong><code>\n+----------+--------+--------------+\n| month | ElPaso | Jacksonville |\n+----------+--------+--------------+\n| April | 2 | 5 |\n| February | 6 | 23 |\n| January | 20 | 13 |\n| March | 26 | 38 |\n| May | 43 | 34 |\n+----------+--------+--------------+</code>\n<strong>Explanation:\n</strong>The table is pivoted, each column represents a city, and each row represents a specific month.</pre>\n" ,
2023-12-09 18:42:21 +08:00
"translatedTitle" : "数据重塑:透视" ,
"translatedContent" : "<pre>\nDataFrame <code>weather</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| city | object |\n| month | object |\n| temperature | int |\n+-------------+--------+\n</pre>\n\n<p>编写一个解决方案,以便将数据 <strong>旋转</strong>,使得每一行代表特定月份的温度,而每个城市都是一个单独的列。</p>\n\n<p>输出结果格式如下示例所示。</p>\n\n<p> </p>\n<b>示例 1:</b>\n\n<pre>\n<b>输入:</b>\n+--------------+----------+-------------+\n| city | month | temperature |\n+--------------+----------+-------------+\n| Jacksonville | January | 13 |\n| Jacksonville | February | 23 |\n| Jacksonville | March | 38 |\n| Jacksonville | April | 5 |\n| Jacksonville | May | 34 |\n| ElPaso | January | 20 |\n| ElPaso | February | 6 |\n| ElPaso | March | 26 |\n| ElPaso | April | 2 |\n| ElPaso | May | 43 |\n+--------------+----------+-------------+\n<code><b>输出:</b>\n+----------+--------+--------------+\n| month | ElPaso | Jacksonville |\n+----------+--------+--------------+\n| April | 2 | 5 |\n| February | 6 | 23 |\n| January | 20 | 13 |\n| March | 26 | 38 |\n| May | 43 | 34 |\n+----------+--------+--------------+</code>\n<strong>解释:\n</strong>表格被旋转,每一列代表一个城市,每一行代表特定的月份。</pre>\n" ,
2023-10-05 03:40:12 +08:00
"isPaidOnly" : false ,
"difficulty" : "Easy" ,
2023-12-09 18:42:21 +08:00
"likes" : 1 ,
2023-10-05 03:40:12 +08:00
"dislikes" : 0 ,
"isLiked" : null ,
"similarQuestions" : "[]" ,
"contributors" : [ ] ,
"langToValidPlayground" : "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}" ,
"topicTags" : [ ] ,
"companyTagStats" : null ,
"codeSnippets" : [
{
"lang" : "Pandas" ,
"langSlug" : "pythondata" ,
"code" : "import pandas as pd\n\ndef pivotTable(weather: pd.DataFrame) -> pd.DataFrame:\n " ,
"__typename" : "CodeSnippetNode"
}
] ,
2023-12-09 18:42:21 +08:00
"stats" : "{\"totalAccepted\": \"1.1K\", \"totalSubmission\": \"1.5K\", \"totalAcceptedRaw\": 1130, \"totalSubmissionRaw\": 1506, \"acRate\": \"75.0%\"}" ,
2023-10-05 03:40:12 +08:00
"hints" : [
"Consider using a built-in function in pandas library to transform the data"
] ,
"solution" : null ,
"status" : null ,
"sampleTestCase" : "{\"headers\":{\"weather\":[\"city\",\"month\",\"temperature\"]},\"rows\":{\"weather\":[[\"Jacksonville\",\"January\",13],[\"Jacksonville\",\"February\",23],[\"Jacksonville\",\"March\",38],[\"Jacksonville\",\"April\",5],[\"Jacksonville\",\"May\",34],[\"ElPaso\",\"January\",20],[\"ElPaso\",\"February\",6],[\"ElPaso\",\"March\",26],[\"ElPaso\",\"April\",2],[\"ElPaso\",\"May\",43]]}}" ,
"metaData" : "{\n \"pythondata\": [\n \"weather = pd.DataFrame([], columns=['city', 'month', 'temperature']).astype({'city':'object', 'month':'object', 'temperature':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"pivot_table\",\n \"languages\": [\n \"pythondata\"\n ],\n \"manual\": true\n}" ,
"judgerAvailable" : true ,
"judgeType" : "large" ,
"mysqlSchemas" : [ ] ,
"enableRunCode" : true ,
"envInfo" : "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}" ,
"book" : null ,
"isSubscribed" : false ,
"isDailyQuestion" : false ,
"dailyRecordStatus" : null ,
"editorType" : "CKEDITOR" ,
"ugcQuestionId" : null ,
"style" : "LEETCODE" ,
"exampleTestcases" : "{\"headers\":{\"weather\":[\"city\",\"month\",\"temperature\"]},\"rows\":{\"weather\":[[\"Jacksonville\",\"January\",13],[\"Jacksonville\",\"February\",23],[\"Jacksonville\",\"March\",38],[\"Jacksonville\",\"April\",5],[\"Jacksonville\",\"May\",34],[\"ElPaso\",\"January\",20],[\"ElPaso\",\"February\",6],[\"ElPaso\",\"March\",26],[\"ElPaso\",\"April\",2],[\"ElPaso\",\"May\",43]]}}" ,
"__typename" : "QuestionNode"
}
}
}