2022-03-27 20:38:29 +08:00
{
"data" : {
"question" : {
"questionId" : "2110" ,
"questionFrontendId" : "1965" ,
"categoryTitle" : "Database" ,
"boundTopicId" : 923630 ,
"title" : "Employees With Missing Information" ,
"titleSlug" : "employees-with-missing-information" ,
2023-12-09 18:42:21 +08:00
"content" : "<p>Table: <code>Employees</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| employee_id | int |\n| name | varchar |\n+-------------+---------+\nemployee_id is the column with unique values for this table.\nEach row of this table indicates the name of the employee whose ID is employee_id.\n</pre>\n\n<p> </p>\n\n<p>Table: <code>Salaries</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| employee_id | int |\n| salary | int |\n+-------------+---------+\nemployee_id is the column with unique values for this table.\nEach row of this table indicates the salary of the employee whose ID is employee_id.\n</pre>\n\n<p> </p>\n\n<p>Write a solution to report the IDs of all the employees with <strong>missing information</strong>. The information of an employee is missing if:</p>\n\n<ul>\n\t<li>The employee's <strong>name</strong> is missing, or</li>\n\t<li>The employee's <strong>salary</strong> is missing.</li>\n</ul>\n\n<p>Return the result table ordered by <code>employee_id</code> <strong>in ascending order</strong>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nEmployees table:\n+-------------+----------+\n| employee_id | name |\n+-------------+----------+\n| 2 | Crew |\n| 4 | Haven |\n| 5 | Kristian |\n+-------------+----------+\nSalaries table:\n+-------------+--------+\n| employee_id | salary |\n+-------------+--------+\n| 5 | 76071 |\n| 1 | 22517 |\n| 4 | 63539 |\n+-------------+--------+\n<strong>Output:</strong> \n+-------------+\n| employee_id |\n+-------------+\n| 1 |\n| 2 |\n+-------------+\n<strong>Explanation:</strong> \nEmployees 1, 2, 4, and 5 are working at this company.\nThe name of employee 1 is missing.\nThe salary of employee 2 is missing.\n</pre>\n" ,
2022-03-27 20:38:29 +08:00
"translatedTitle" : "丢失信息的雇员" ,
2023-12-09 18:42:21 +08:00
"translatedContent" : "<p>表: <code>Employees</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| employee_id | int |\n| name | varchar |\n+-------------+---------+\nemployee_id 是该表中具有唯一值的列。\n每一行表示雇员的 id 和他的姓名。\n</pre>\n\n<p>表: <code>Salaries</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| employee_id | int |\n| salary | int |\n+-------------+---------+\nemployee_id 是该表中具有唯一值的列。\n每一行表示雇员的 id 和他的薪水。\n</pre>\n\n<p> </p>\n\n<p>编写解决方案,找到所有 <strong>丢失信息</strong> 的雇员 id。当满足下面一个条件时, 就被认为是雇员的信息丢失: </p>\n\n<ul>\n\t<li>雇员的 <strong>姓名</strong> 丢失了,或者</li>\n\t<li>雇员的 <strong>薪水信息</strong> 丢失了</li>\n</ul>\n\n<p>返回这些雇员的 id <code>employee_id</code> , <strong>从小到大排序 </strong>。</p>\n\n<p>查询结果格式如下面的例子所示。</p>\n\n<p> </p>\n\n<p><strong>示例 1: </strong></p>\n\n<pre>\n<strong>输入:</strong>\nEmployees table:\n+-------------+----------+\n| employee_id | name |\n+-------------+----------+\n| 2 | Crew |\n| 4 | Haven |\n| 5 | Kristian |\n+-------------+----------+\nSalaries table:\n+-------------+--------+\n| employee_id | salary |\n+-------------+--------+\n| 5 | 76071 |\n| 1 | 22517 |\n| 4 | 63539 |\n+-------------+--------+\n<strong>输出:</strong>\n+-------------+\n| employee_id |\n+-------------+\n| 1 |\n| 2 |\n+-------------+\n<strong>解释:</strong>\n雇员 1, 2, 4, 5 都在这个公司工作。\n1 号雇员的姓名丢失了。\n2 号雇员的薪水信息丢失了。</pre>\n" ,
2022-03-27 20:38:29 +08:00
"isPaidOnly" : false ,
"difficulty" : "Easy" ,
2023-12-09 18:42:21 +08:00
"likes" : 91 ,
2022-03-27 20:38:29 +08:00
"dislikes" : 0 ,
"isLiked" : null ,
"similarQuestions" : "[]" ,
"contributors" : [ ] ,
2023-12-09 18:42:21 +08:00
"langToValidPlayground" : "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}" ,
2022-03-27 20:38:29 +08:00
"topicTags" : [
{
"name" : "Database" ,
"slug" : "database" ,
"translatedName" : "数据库" ,
"__typename" : "TopicTagNode"
}
] ,
"companyTagStats" : null ,
"codeSnippets" : [
{
"lang" : "MySQL" ,
"langSlug" : "mysql" ,
"code" : "# Write your MySQL query statement below" ,
"__typename" : "CodeSnippetNode"
} ,
{
"lang" : "MS SQL Server" ,
"langSlug" : "mssql" ,
"code" : "/* Write your T-SQL query statement below */" ,
"__typename" : "CodeSnippetNode"
} ,
{
"lang" : "Oracle" ,
"langSlug" : "oraclesql" ,
"code" : "/* Write your PL/SQL query statement below */" ,
"__typename" : "CodeSnippetNode"
2023-12-09 18:42:21 +08:00
} ,
{
"lang" : "Pandas" ,
"langSlug" : "pythondata" ,
"code" : "import pandas as pd\n\ndef find_employees(employees: pd.DataFrame, salaries: pd.DataFrame) -> pd.DataFrame:\n " ,
"__typename" : "CodeSnippetNode"
} ,
{
"lang" : "PostgreSQL" ,
"langSlug" : "postgresql" ,
"code" : "-- Write your PostgreSQL query statement below" ,
"__typename" : "CodeSnippetNode"
2022-03-27 20:38:29 +08:00
}
] ,
2023-12-09 18:42:21 +08:00
"stats" : "{\"totalAccepted\": \"49.6K\", \"totalSubmission\": \"70K\", \"totalAcceptedRaw\": 49621, \"totalSubmissionRaw\": 69970, \"acRate\": \"70.9%\"}" ,
2022-03-27 20:38:29 +08:00
"hints" : [ ] ,
"solution" : null ,
"status" : null ,
"sampleTestCase" : "{\"headers\":{\"Employees\":[\"employee_id\",\"name\"],\"Salaries\":[\"employee_id\",\"salary\"]},\"rows\":{\"Employees\":[[2,\"Crew\"],[4,\"Haven\"],[5,\"Kristian\"]],\"Salaries\":[[5,76071],[1,22517],[4,63539]]}}" ,
2023-12-09 18:42:21 +08:00
"metaData" : "{\"mysql\":[\"Create table If Not Exists Employees (employee_id int, name varchar(30))\",\"Create table If Not Exists Salaries (employee_id int, salary int)\"],\"mssql\":[\"Create table Employees (employee_id int, name varchar(30))\",\"Create table Salaries (employee_id int, salary int)\"],\"oraclesql\":[\"Create table Employees (employee_id int, name varchar(30))\",\"Create table Salaries (employee_id int, salary int)\"],\"database\":true,\"name\":\"find_employees\",\"pythondata\":[\"Employees = pd.DataFrame([], columns=['employee_id', 'name']).astype({'employee_id':'Int64', 'name':'object'})\",\"Salaries = pd.DataFrame([], columns=['employee_id', 'salary']).astype({'employee_id':'Int64', 'salary':'Int64'})\"],\"postgresql\":[\"Create table If Not Exists Employees (employee_id int, name varchar(30))\",\"Create table If Not Exists Salaries (employee_id int, salary int)\"],\"database_schema\":{\"Employees\":{\"employee_id\":\"INT\",\"name\":\"VARCHAR(30)\"},\"Salaries\":{\"employee_id\":\"INT\",\"salary\":\"INT\"}}}" ,
2022-03-27 20:38:29 +08:00
"judgerAvailable" : true ,
"judgeType" : "large" ,
"mysqlSchemas" : [
"Create table If Not Exists Employees (employee_id int, name varchar(30))" ,
"Create table If Not Exists Salaries (employee_id int, salary int)" ,
"Truncate table Employees" ,
"insert into Employees (employee_id, name) values ('2', 'Crew')" ,
"insert into Employees (employee_id, name) values ('4', 'Haven')" ,
"insert into Employees (employee_id, name) values ('5', 'Kristian')" ,
"Truncate table Salaries" ,
"insert into Salaries (employee_id, salary) values ('5', '76071')" ,
"insert into Salaries (employee_id, salary) values ('1', '22517')" ,
"insert into Salaries (employee_id, salary) values ('4', '63539')"
] ,
"enableRunCode" : true ,
2023-12-09 18:42:21 +08:00
"envInfo" : "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}" ,
2022-03-27 20:38:29 +08:00
"book" : null ,
"isSubscribed" : false ,
"isDailyQuestion" : false ,
"dailyRecordStatus" : null ,
"editorType" : "CKEDITOR" ,
"ugcQuestionId" : null ,
"style" : "LEETCODE" ,
"exampleTestcases" : "{\"headers\":{\"Employees\":[\"employee_id\",\"name\"],\"Salaries\":[\"employee_id\",\"salary\"]},\"rows\":{\"Employees\":[[2,\"Crew\"],[4,\"Haven\"],[5,\"Kristian\"]],\"Salaries\":[[5,76071],[1,22517],[4,63539]]}}" ,
"__typename" : "QuestionNode"
}
}
}