1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode/problem/minimum-degree-of-a-connected-trio-in-a-graph.html

40 lines
1.9 KiB
HTML
Raw Normal View History

2022-03-27 18:27:43 +08:00
<p>You are given an undirected graph. You are given an integer <code>n</code> which is the number of nodes in the graph and an array <code>edges</code>, where each <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>]</code> indicates that there is an undirected edge between <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code>.</p>
<p>A <strong>connected trio</strong> is a set of <strong>three</strong> nodes where there is an edge between <b>every</b> pair of them.</p>
<p>The <strong>degree of a connected trio</strong> is the number of edges where one endpoint is in the trio, and the other is not.</p>
<p>Return <em>the <strong>minimum</strong> degree of a connected trio in the graph, or</em> <code>-1</code> <em>if the graph has no connected trios.</em></p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2021/01/26/trios1.png" style="width: 388px; height: 164px;" />
<pre>
<strong>Input:</strong> n = 6, edges = [[1,2],[1,3],[3,2],[4,1],[5,2],[3,6]]
<strong>Output:</strong> 3
<strong>Explanation:</strong> There is exactly one trio, which is [1,2,3]. The edges that form its degree are bolded in the figure above.
</pre>
<p><strong>Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2021/01/26/trios2.png" style="width: 388px; height: 164px;" />
<pre>
<strong>Input:</strong> n = 7, edges = [[1,3],[4,1],[4,3],[2,5],[5,6],[6,7],[7,5],[2,6]]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are exactly three trios:
1) [1,4,3] with degree 0.
2) [2,5,6] with degree 2.
3) [5,6,7] with degree 2.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 &lt;= n &lt;= 400</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>1 &lt;= edges.length &lt;= n * (n-1) / 2</code></li>
<li><code>1 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n</code></li>
<li><code>u<sub>i </sub>!= v<sub>i</sub></code></li>
<li>There are no repeated edges.</li>
</ul>