1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 11:08:15 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/problem (Chinese)/所有路径 [bP4bmD].html

62 lines
2.1 KiB
HTML
Raw Normal View History

2022-03-27 20:38:29 +08:00
<p>给定一个有&nbsp;<code>n</code>&nbsp;个节点的有向无环图,用二维数组&nbsp;<code>graph</code>&nbsp;表示,请找到所有从&nbsp;<code>0</code>&nbsp;&nbsp;<code>n-1</code>&nbsp;的路径并输出(不要求按顺序)。</p>
<p><code>graph</code>&nbsp;的第 <code>i</code> 个数组中的单元都表示有向图中 <code>i</code>&nbsp;号节点所能到达的下一些结点(译者注:有向图是有方向的,即规定了 a&rarr;b 你就不能从 b&rarr;a ),若为空,就是没有下一个节点了。</p>
<p>&nbsp;</p>
<p><strong>示例 1</strong></p>
<p><img alt="" src="https://assets.leetcode.com/uploads/2020/09/28/all_1.jpg" style="height: 242px; width: 242px;" /></p>
<pre>
<strong>输入:</strong>graph = [[1,2],[3],[3],[]]
<strong>输出:</strong>[[0,1,3],[0,2,3]]
<strong>解释:</strong>有两条路径 0 -&gt; 1 -&gt; 3 和 0 -&gt; 2 -&gt; 3
</pre>
<p><strong>示例 2</strong></p>
<p><img alt="" src="https://assets.leetcode.com/uploads/2020/09/28/all_2.jpg" style="height: 301px; width: 423px;" /></p>
<pre>
<strong>输入:</strong>graph = [[4,3,1],[3,2,4],[3],[4],[]]
<strong>输出:</strong>[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
</pre>
<p><strong>示例 3</strong></p>
<pre>
<strong>输入:</strong>graph = [[1],[]]
<strong>输出:</strong>[[0,1]]
</pre>
<p><strong>示例 4</strong></p>
<pre>
<strong>输入:</strong>graph = [[1,2,3],[2],[3],[]]
<strong>输出:</strong>[[0,1,2,3],[0,2,3],[0,3]]
</pre>
<p><strong>示例 5</strong></p>
<pre>
<strong>输入:</strong>graph = [[1,3],[2],[3],[]]
<strong>输出:</strong>[[0,1,2,3],[0,3]]
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>n == graph.length</code></li>
<li><code>2 &lt;= n &lt;= 15</code></li>
<li><code>0 &lt;= graph[i][j] &lt; n</code></li>
<li><code>graph[i][j] != i</code>&nbsp;</li>
<li>保证输入为有向无环图 <code>(GAD)</code></li>
</ul>
<p>&nbsp;</p>
<p><meta charset="UTF-8" />注意:本题与主站 797&nbsp;题相同:<a href="https://leetcode-cn.com/problems/all-paths-from-source-to-target/">https://leetcode-cn.com/problems/all-paths-from-source-to-target/</a></p>