"content":"<p>You are given an array <code>nums</code> of <code>n</code> positive integers and an integer <code>k</code>.</p>\n\n<p>Initially, you start with a score of <code>1</code>. You have to maximize your score by applying the following operation at most <code>k</code> times:</p>\n\n<ul>\n\t<li>Choose any <strong>non-empty</strong> subarray <code>nums[l, ..., r]</code> that you haven't chosen previously.</li>\n\t<li>Choose an element <code>x</code> of <code>nums[l, ..., r]</code> with the highest <strong>prime score</strong>. If multiple such elements exist, choose the one with the smallest index.</li>\n\t<li>Multiply your score by <code>x</code>.</li>\n</ul>\n\n<p>Here, <code>nums[l, ..., r]</code> denotes the subarray of <code>nums</code> starting at index <code>l</code> and ending at the index <code>r</code>, both ends being inclusive.</p>\n\n<p>The <strong>prime score</strong> of an integer <code>x</code> is equal to the number of distinct prime factors of <code>x</code>. For example, the prime score of <code>300</code> is <code>3</code> since <code>300 = 2 * 2 * 3 * 5 * 5</code>.</p>\n\n<p>Return <em>the <strong>maximum possible score</strong> after applying at most </em><code>k</code><em> operations</em>.</p>\n\n<p>Since the answer may be large, return it modulo <code>10<sup>9 </sup>+ 7</code>.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [8,3,9,3,8], k = 2\n<strong>Output:</strong> 81\n<strong>Explanation:</strong> To get a score of 81, we can apply the following operations:\n- Choose subarray nums[2, ..., 2]. nums[2] is the only element in this subarray. Hence, we multiply the score by nums[2]. The score becomes 1 * 9 = 9.\n- Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 1, but nums[2] has the smaller index. Hence, we multiply the score by nums[2]. The score becomes 9 * 9 = 81.\nIt can be proven that 81 is the highest score one can obtain.</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [19,12,14,6,10,18], k = 3\n<strong>Output:</strong> 4788\n<strong>Explanation:</strong> To get a score of 4788, we can apply the following operations: \n- Choose subarray nums[0, ..., 0]. nums[0] is the only element in this subarray. Hence, we multiply the score by nums[0]. The score becomes 1 * 19 = 19.\n- Choose subarray nums[5, ..., 5]. nums[5] is the only element in this subarray. Hence, we multiply the score by nums[5]. The score becomes 19 * 18 = 342.\n- Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 2, but nums[2] has the smaller index. Hence, we multipy the score by nums[2]. The score becomes 342 * 14 = 4788.\nIt can be proven that 4788 is the highest score one can obtain.\n</pre>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>1 <= nums.length == n <= 10<sup>5</sup></code></li>\n\t<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>\n\t<li><code>1 <= k <= min(n * (n + 1) / 2, 10<sup>9</sup>)</code></li>\n</ul>\n",
"<div class=\"_1l1MA\">Calculate <code>nums[i]</code>'s prime score <code>s[i]</code>by factoring in <code>O(sqrt(nums[i]))</code> time.</div>",
"<div class=\"_1l1MA\">For each <code>nums[i]</code>, find the nearest index <code>left[i]</code> on the left (if any) such that <code>s[left[i]] >= s[i]</code>.if none isfound,set <code>left[i]</code> to <code>-1</code>. Similarly, find the nearest index <code>right[i]</code> on the right (if any) such that <code>s[right[i]] > s[i]</code>. If none is found, set <code>right[i]</code> to <code>n</code>.</div>",
"<div class=\"_1l1MA\">Use a monotonic stack to compute <code>right[i]</code> and <code>left[i]</code>.</div>",
"<div class=\"_1l1MA\">For each index <code>i</code>, if <code>left[i] + 1 <= l<= i <= r<= right[i] - 1</code>, then <code>s[i]</code> is the maximum value in the range <code>[l, r]</code>. For this particular <code>i</code>, there are<code>ranges[i] =(i - left[i]) * (right[i] - i)</code> ranges where index <code>i</code> will be chosen.</div>",
"<div class=\"_1l1MA\">Loop over all elements of <code>nums</code>by non-increasingprime score, each element will be chosen <code>min(ranges[i], remainingK)</code>times, where <code>reaminingK</code>denotes the number of remaining operations. Therefore, the score will be multiplied by <code>s[i]^min(ranges[i],remainingK)</code>.</div>",
"<div class=\"_1l1MA\">Use fast exponentiation to quickly calculate <code>A^B mod C</code>.</div>"
"envInfo":"{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 11 </code> using the latest C++ 20 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code>OpenJDK 17</code>. Java 8 features such as lambda expressions and stream API can be used. </p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 8.2</code> using the gnu11 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O1</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10\\\" target=\\\"_blank\\\">C# 10 with .NET 6 runtime</a></p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use 5.3.0 version of <a href=\\\"https://github.com/datastructures-js/priority-queue/tree/fb4fdb984834421279aeb081df7af624d17c2a03\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and 4.2.1 version of <a href=\\\"https://githu