"content":"<p>Given the <code>root</code> of a binary search tree, and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>smallest value (<strong>1-indexed</strong>) of all the values of the nodes in the tree</em>.</p>\n\n<p> </p>\n<p><strong>Example 1:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2021/01/28/kthtree1.jpg\" style=\"width: 212px; height: 301px;\" />\n<pre>\n<strong>Input:</strong> root = [3,1,4,null,2], k = 1\n<strong>Output:</strong> 1\n</pre>\n\n<p><strong>Example 2:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2021/01/28/kthtree2.jpg\" style=\"width: 382px; height: 302px;\" />\n<pre>\n<strong>Input:</strong> root = [5,3,6,2,4,null,null,1], k = 3\n<strong>Output:</strong> 3\n</pre>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li>The number of nodes in the tree is <code>n</code>.</li>\n\t<li><code>1 <= k <= n <= 10<sup>4</sup></code></li>\n\t<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>\n</ul>\n\n<p> </p>\n<p><strong>Follow up:</strong> If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?</p>\n",
"code":"/**\n * Definition for a binary tree node.\n * public class TreeNode {\n * int val;\n * TreeNode left;\n * TreeNode right;\n * TreeNode() {}\n * TreeNode(int val) { this.val = val; }\n * TreeNode(int val, TreeNode left, TreeNode right) {\n * this.val = val;\n * this.left = left;\n * this.right = right;\n * }\n * }\n */\nclass Solution {\n public int kthSmallest(TreeNode root, int k) {\n \n }\n}",
"__typename":"CodeSnippetNode"
},
{
"lang":"Python",
"langSlug":"python",
"code":"# Definition for a binary tree node.\n# class TreeNode(object):\n# def __init__(self, val=0, left=None, right=None):\n# self.val = val\n# self.left = left\n# self.right = right\nclass Solution(object):\n def kthSmallest(self, root, k):\n \"\"\"\n :type root: TreeNode\n :type k: int\n :rtype: int\n \"\"\"\n ",
"__typename":"CodeSnippetNode"
},
{
"lang":"Python3",
"langSlug":"python3",
"code":"# Definition for a binary tree node.\n# class TreeNode:\n# def __init__(self, val=0, left=None, right=None):\n# self.val = val\n# self.left = left\n# self.right = right\nclass Solution:\n def kthSmallest(self, root: Optional[TreeNode], k: int) -> int:\n ",
"__typename":"CodeSnippetNode"
},
{
"lang":"C",
"langSlug":"c",
"code":"/**\n * Definition for a binary tree node.\n * struct TreeNode {\n * int val;\n * struct TreeNode *left;\n * struct TreeNode *right;\n * };\n */\n\n\nint kthSmallest(struct TreeNode* root, int k){\n\n}",
"__typename":"CodeSnippetNode"
},
{
"lang":"C#",
"langSlug":"csharp",
"code":"/**\n * Definition for a binary tree node.\n * public class TreeNode {\n * public int val;\n * public TreeNode left;\n * public TreeNode right;\n * public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {\n * this.val = val;\n * this.left = left;\n * this.right = right;\n * }\n * }\n */\npublic class Solution {\n public int KthSmallest(TreeNode root, int k) {\n \n }\n}",
"code":"# Definition for a binary tree node.\n# class TreeNode\n# attr_accessor :val, :left, :right\n# def initialize(val = 0, left = nil, right = nil)\n# @val = val\n# @left = left\n# @right = right\n# end\n# end\n# @param {TreeNode} root\n# @param {Integer} k\n# @return {Integer}\ndef kth_smallest(root, k)\n \nend",
"__typename":"CodeSnippetNode"
},
{
"lang":"Swift",
"langSlug":"swift",
"code":"/**\n * Definition for a binary tree node.\n * public class TreeNode {\n * public var val: Int\n * public var left: TreeNode?\n * public var right: TreeNode?\n * public init() { self.val = 0; self.left = nil; self.right = nil; }\n * public init(_ val: Int) { self.val = val; self.left = nil; self.right = nil; }\n * public init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) {\n * self.val = val\n * self.left = left\n * self.right = right\n * }\n * }\n */\nclass Solution {\n func kthSmallest(_ root: TreeNode?, _ k: Int) -> Int {\n \n }\n}",
"__typename":"CodeSnippetNode"
},
{
"lang":"Go",
"langSlug":"golang",
"code":"/**\n * Definition for a binary tree node.\n * type TreeNode struct {\n * Val int\n * Left *TreeNode\n * Right *TreeNode\n * }\n */\nfunc kthSmallest(root *TreeNode, k int) int {\n \n}",
"__typename":"CodeSnippetNode"
},
{
"lang":"Scala",
"langSlug":"scala",
"code":"/**\n * Definition for a binary tree node.\n * class TreeNode(_value: Int = 0, _left: TreeNode = null, _right: TreeNode = null) {\n * var value: Int = _value\n * var left: TreeNode = _left\n * var right: TreeNode = _right\n * }\n */\nobject Solution {\n def kthSmallest(root: TreeNode, k: Int): Int = {\n \n }\n}",
"__typename":"CodeSnippetNode"
},
{
"lang":"Kotlin",
"langSlug":"kotlin",
"code":"/**\n * Example:\n * var ti = TreeNode(5)\n * var v = ti.`val`\n * Definition for a binary tree node.\n * class TreeNode(var `val`: Int) {\n * var left: TreeNode? = null\n * var right: TreeNode? = null\n * }\n */\nclass Solution {\n fun kthSmallest(root: TreeNode?, k: Int): Int {\n \n }\n}",
"envInfo":"{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 11 </code> using the latest C++ 17 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code> OpenJDK 17 </code>. Java 8 features such as lambda expressions and stream API can be used. </p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 8.2</code> using the gnu99 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O1</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9\\\" target=\\\"_blank\\\">C# 10 with .NET 6 runtime</a></p>\\r\\n\\r\\n<p>Your code is compiled with debug flag enabled (<code>/debug</code>).</p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use <a href=\\\"https://github.com/datastructures-js/priority-queue\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and <a href=\\\"https: