<p>There is an <code>m x n</code> grid, where <code>(0, 0)</code> is the top-left cell and <code>(m - 1, n - 1)</code> is the bottom-right cell. You are given an integer array <code>startPos</code> where <code>startPos = [start<sub>row</sub>, start<sub>col</sub>]</code> indicates that <strong>initially</strong>, a <strong>robot</strong> is at the cell <code>(start<sub>row</sub>, start<sub>col</sub>)</code>. You are also given an integer array <code>homePos</code> where <code>homePos = [home<sub>row</sub>, home<sub>col</sub>]</code> indicates that its <strong>home</strong> is at the cell <code>(home<sub>row</sub>, home<sub>col</sub>)</code>.</p>
<p>The robot needs to go to its home. It can move one cell in four directions: <strong>left</strong>, <strong>right</strong>, <strong>up</strong>, or <strong>down</strong>, and it can not move outside the boundary. Every move incurs some cost. You are further given two <strong>0-indexed</strong> integer arrays: <code>rowCosts</code> of length <code>m</code> and <code>colCosts</code> of length <code>n</code>.</p>
<ul>
<li>If the robot moves <strong>up</strong> or <strong>down</strong> into a cell whose <strong>row</strong> is <code>r</code>, then this move costs <code>rowCosts[r]</code>.</li>
<li>If the robot moves <strong>left</strong> or <strong>right</strong> into a cell whose <strong>column</strong> is <code>c</code>, then this move costs <code>colCosts[c]</code>.</li>
</ul>
<p>Return <em>the <strong>minimum total cost</strong> for this robot to return home</em>.</p>