mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-11 02:58:13 +08:00
36 lines
1.4 KiB
HTML
36 lines
1.4 KiB
HTML
|
<p>Given an array of integers, return the maximum sum for a <strong>non-empty</strong> subarray (contiguous elements) with at most one element deletion. In other words, you want to choose a subarray and optionally delete one element from it so that there is still at least one element left and the sum of the remaining elements is maximum possible.</p>
|
||
|
|
||
|
<p>Note that the subarray needs to be <strong>non-empty</strong> after deleting one element.</p>
|
||
|
|
||
|
<p> </p>
|
||
|
<p><strong>Example 1:</strong></p>
|
||
|
|
||
|
<pre>
|
||
|
<strong>Input:</strong> arr = [1,-2,0,3]
|
||
|
<strong>Output:</strong> 4
|
||
|
<strong>Explanation: </strong>Because we can choose [1, -2, 0, 3] and drop -2, thus the subarray [1, 0, 3] becomes the maximum value.</pre>
|
||
|
|
||
|
<p><strong>Example 2:</strong></p>
|
||
|
|
||
|
<pre>
|
||
|
<strong>Input:</strong> arr = [1,-2,-2,3]
|
||
|
<strong>Output:</strong> 3
|
||
|
<strong>Explanation: </strong>We just choose [3] and it's the maximum sum.
|
||
|
</pre>
|
||
|
|
||
|
<p><strong>Example 3:</strong></p>
|
||
|
|
||
|
<pre>
|
||
|
<strong>Input:</strong> arr = [-1,-1,-1,-1]
|
||
|
<strong>Output:</strong> -1
|
||
|
<strong>Explanation:</strong> The final subarray needs to be non-empty. You can't choose [-1] and delete -1 from it, then get an empty subarray to make the sum equals to 0.
|
||
|
</pre>
|
||
|
|
||
|
<p> </p>
|
||
|
<p><strong>Constraints:</strong></p>
|
||
|
|
||
|
<ul>
|
||
|
<li><code>1 <= arr.length <= 10<sup>5</sup></code></li>
|
||
|
<li><code>-10<sup>4</sup> <= arr[i] <= 10<sup>4</sup></code></li>
|
||
|
</ul>
|