mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-26 02:00:27 +08:00
40 lines
1.8 KiB
HTML
40 lines
1.8 KiB
HTML
|
<p>There is a one-dimensional garden on the x-axis. The garden starts at the point <code>0</code> and ends at the point <code>n</code>. (i.e The length of the garden is <code>n</code>).</p>
|
||
|
|
||
|
<p>There are <code>n + 1</code> taps located at points <code>[0, 1, ..., n]</code> in the garden.</p>
|
||
|
|
||
|
<p>Given an integer <code>n</code> and an integer array <code>ranges</code> of length <code>n + 1</code> where <code>ranges[i]</code> (0-indexed) means the <code>i-th</code> tap can water the area <code>[i - ranges[i], i + ranges[i]]</code> if it was open.</p>
|
||
|
|
||
|
<p>Return <em>the minimum number of taps</em> that should be open to water the whole garden, If the garden cannot be watered return <strong>-1</strong>.</p>
|
||
|
|
||
|
<p> </p>
|
||
|
<p><strong>Example 1:</strong></p>
|
||
|
<img alt="" src="https://assets.leetcode.com/uploads/2020/01/16/1685_example_1.png" style="width: 525px; height: 255px;" />
|
||
|
<pre>
|
||
|
<strong>Input:</strong> n = 5, ranges = [3,4,1,1,0,0]
|
||
|
<strong>Output:</strong> 1
|
||
|
<strong>Explanation:</strong> The tap at point 0 can cover the interval [-3,3]
|
||
|
The tap at point 1 can cover the interval [-3,5]
|
||
|
The tap at point 2 can cover the interval [1,3]
|
||
|
The tap at point 3 can cover the interval [2,4]
|
||
|
The tap at point 4 can cover the interval [4,4]
|
||
|
The tap at point 5 can cover the interval [5,5]
|
||
|
Opening Only the second tap will water the whole garden [0,5]
|
||
|
</pre>
|
||
|
|
||
|
<p><strong>Example 2:</strong></p>
|
||
|
|
||
|
<pre>
|
||
|
<strong>Input:</strong> n = 3, ranges = [0,0,0,0]
|
||
|
<strong>Output:</strong> -1
|
||
|
<strong>Explanation:</strong> Even if you activate all the four taps you cannot water the whole garden.
|
||
|
</pre>
|
||
|
|
||
|
<p> </p>
|
||
|
<p><strong>Constraints:</strong></p>
|
||
|
|
||
|
<ul>
|
||
|
<li><code>1 <= n <= 10<sup>4</sup></code></li>
|
||
|
<li><code>ranges.length == n + 1</code></li>
|
||
|
<li><code>0 <= ranges[i] <= 100</code></li>
|
||
|
</ul>
|