mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-11 02:58:13 +08:00
40 lines
2.4 KiB
HTML
40 lines
2.4 KiB
HTML
|
<p>Given an undirected tree consisting of <code>n</code> vertices numbered from <code>0</code> to <code>n-1</code>, which has some apples in their vertices. You spend 1 second to walk over one edge of the tree. <em>Return the minimum time in seconds you have to spend to collect all apples in the tree, starting at <strong>vertex 0</strong> and coming back to this vertex.</em></p>
|
||
|
|
||
|
<p>The edges of the undirected tree are given in the array <code>edges</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> means that exists an edge connecting the vertices <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code>. Additionally, there is a boolean array <code>hasApple</code>, where <code>hasApple[i] = true</code> means that vertex <code>i</code> has an apple; otherwise, it does not have any apple.</p>
|
||
|
|
||
|
<p> </p>
|
||
|
<p><strong>Example 1:</strong></p>
|
||
|
<img alt="" src="https://assets.leetcode.com/uploads/2020/04/23/min_time_collect_apple_1.png" style="width: 300px; height: 212px;" />
|
||
|
<pre>
|
||
|
<strong>Input:</strong> n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,true,true,false]
|
||
|
<strong>Output:</strong> 8
|
||
|
<strong>Explanation:</strong> The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.
|
||
|
</pre>
|
||
|
|
||
|
<p><strong>Example 2:</strong></p>
|
||
|
<img alt="" src="https://assets.leetcode.com/uploads/2020/04/23/min_time_collect_apple_2.png" style="width: 300px; height: 212px;" />
|
||
|
<pre>
|
||
|
<strong>Input:</strong> n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,false,true,false]
|
||
|
<strong>Output:</strong> 6
|
||
|
<strong>Explanation:</strong> The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.
|
||
|
</pre>
|
||
|
|
||
|
<p><strong>Example 3:</strong></p>
|
||
|
|
||
|
<pre>
|
||
|
<strong>Input:</strong> n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,false,false,false,false,false]
|
||
|
<strong>Output:</strong> 0
|
||
|
</pre>
|
||
|
|
||
|
<p> </p>
|
||
|
<p><strong>Constraints:</strong></p>
|
||
|
|
||
|
<ul>
|
||
|
<li><code>1 <= n <= 10<sup>5</sup></code></li>
|
||
|
<li><code>edges.length == n - 1</code></li>
|
||
|
<li><code>edges[i].length == 2</code></li>
|
||
|
<li><code>0 <= a<sub>i</sub> < b<sub>i</sub> <= n - 1</code></li>
|
||
|
<li><code>from<sub>i</sub> < to<sub>i</sub></code></li>
|
||
|
<li><code>hasApple.length == n</code></li>
|
||
|
</ul>
|