2023-12-09 18:42:21 +08:00
< p > Given an integer array < code > nums< / code > and an integer < code > k< / code > , split < code > nums< / code > into < code > k< / code > non-empty subarrays such that the largest sum of any subarray is < strong > minimized< / strong > .< / p >
2022-03-27 18:35:17 +08:00
2023-12-09 18:42:21 +08:00
< p > Return < em > the minimized largest sum of the split< / em > .< / p >
< p > A < strong > subarray< / strong > is a contiguous part of the array.< / p >
2022-03-27 18:35:17 +08:00
< p > < / p >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 1:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
2023-12-09 18:42:21 +08:00
< strong > Input:< / strong > nums = [7,2,5,10,8], k = 2
2022-03-27 18:35:17 +08:00
< strong > Output:< / strong > 18
2023-12-09 18:42:21 +08:00
< strong > Explanation:< / strong > There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8], where the largest sum among the two subarrays is only 18.
2022-03-27 18:35:17 +08:00
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 2:< / strong > < / p >
2022-03-27 18:35:17 +08:00
< pre >
2023-12-09 18:42:21 +08:00
< strong > Input:< / strong > nums = [1,2,3,4,5], k = 2
2022-03-27 18:35:17 +08:00
< strong > Output:< / strong > 9
2023-12-09 18:42:21 +08:00
< strong > Explanation:< / strong > There are four ways to split nums into two subarrays.
The best way is to split it into [1,2,3] and [4,5], where the largest sum among the two subarrays is only 9.
2022-03-27 18:35:17 +08:00
< / pre >
< p > < / p >
< p > < strong > Constraints:< / strong > < / p >
< ul >
< li > < code > 1 < = nums.length < = 1000< / code > < / li >
< li > < code > 0 < = nums[i] < = 10< sup > 6< / sup > < / code > < / li >
2023-12-09 18:42:21 +08:00
< li > < code > 1 < = k < = min(50, nums.length)< / code > < / li >
2022-03-27 18:35:17 +08:00
< / ul >