2023-12-09 18:53:53 +08:00
{
"data" : {
"question" : {
"questionId" : "1480" ,
"questionFrontendId" : "1341" ,
"categoryTitle" : "Database" ,
"boundTopicId" : 90536 ,
"title" : "Movie Rating" ,
"titleSlug" : "movie-rating" ,
"content" : "<p>Table: <code>Movies</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| movie_id | int |\n| title | varchar |\n+---------------+---------+\nmovie_id is the primary key (column with unique values) for this table.\ntitle is the name of the movie.\n</pre>\n\n<p> </p>\n\n<p>Table: <code>Users</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| user_id | int |\n| name | varchar |\n+---------------+---------+\nuser_id is the primary key (column with unique values) for this table.\n</pre>\n\n<p> </p>\n\n<p>Table: <code>MovieRating</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| movie_id | int |\n| user_id | int |\n| rating | int |\n| created_at | date |\n+---------------+---------+\n(movie_id, user_id) is the primary key (column with unique values) for this table.\nThis table contains the rating of a movie by a user in their review.\ncreated_at is the user's review date. \n</pre>\n\n<p> </p>\n\n<p>Write a solution to:</p>\n\n<ul>\n\t<li>Find the name of the user who has rated the greatest number of movies. In case of a tie, return the lexicographically smaller user name.</li>\n\t<li>Find the movie name with the <strong>highest average</strong> rating in <code>February 2020</code>. In case of a tie, return the lexicographically smaller movie name.</li>\n</ul>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nMovies table:\n+-------------+--------------+\n| movie_id | title |\n+-------------+--------------+\n| 1 | Avengers |\n| 2 | Frozen 2 |\n| 3 | Joker |\n+-------------+--------------+\nUsers table:\n+-------------+--------------+\n| user_id | name |\n+-------------+--------------+\n| 1 | Daniel |\n| 2 | Monica |\n| 3 | Maria |\n| 4 | James |\n+-------------+--------------+\nMovieRating table:\n+-------------+--------------+--------------+-------------+\n| movie_id | user_id | rating | created_at |\n+-------------+--------------+--------------+-------------+\n| 1 | 1 | 3 | 2020-01-12 |\n| 1 | 2 | 4 | 2020-02-11 |\n| 1 | 3 | 2 | 2020-02-12 |\n| 1 | 4 | 1 | 2020-01-01 |\n| 2 | 1 | 5 | 2020-02-17 | \n| 2 | 2 | 2 | 2020-02-01 | \n| 2 | 3 | 2 | 2020-03-01 |\n| 3 | 1 | 3 | 2020-02-22 | \n| 3 | 2 | 4 | 2020-02-25 | \n+-------------+--------------+--------------+-------------+\n<strong>Output:</strong> \n+--------------+\n| results |\n+--------------+\n| Daniel |\n| Frozen 2 |\n+--------------+\n<strong>Explanation:</strong> \nDaniel and Monica have rated 3 movies ("Avengers", "Frozen 2" and "Joker") but Daniel is smaller lexicographically.\nFrozen 2 and Joker have a rating average of 3.5 in February but Frozen 2 is smaller lexicographically.\n</pre>\n" ,
"translatedTitle" : "电影评分" ,
"translatedContent" : "<p>表:<code>Movies</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| movie_id | int |\n| title | varchar |\n+---------------+---------+\nmovie_id 是这个表的主键(具有唯一值的列)。\ntitle 是电影的名字。\n</pre>\n\n<p>表:<code>Users</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| user_id | int |\n| name | varchar |\n+---------------+---------+\nuser_id 是表的主键(具有唯一值的列)。\n</pre>\n\n<p>表:<code>MovieRating</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| movie_id | int |\n| user_id | int |\n| rating | int |\n| created_at | date |\n+---------------+---------+\n(movie_id, user_id) 是这个表的主键(具有唯一值的列的组合)。\n这个表包含用户在其评论中对电影的评分 rating 。\ncreated_at 是用户的点评日期。 \n</pre>\n\n<p> </p>\n\n<p>请你编写一个解决方案:</p>\n\n<ul>\n\t<li>查找评论电影数量最多的用户名。如果出现平局,返回字典序较小的用户名。</li>\n\t<li>查找在 <code>February 2020</code><strong> 平均评分最高</strong> 的电影名称。如果出现平局,返回字典序较小的电影名称。</li>\n</ul>\n\n<p><strong>字典序</strong> ,即按字母在字典中出现顺序对字符串排序,字典序较小则意味着排序靠前。</p>\n\n<p>返回结果格式如下例所示。</p>\n\n<p> </p>\n\n<p><strong>示例 1: </strong></p>\n\n<pre>\n<strong>输入:</strong>\nMovies 表:\n+-------------+--------------+\n| movie_id | title |\n+-------------+--------------+\n| 1 | Avengers |\n| 2 | Frozen 2 |\n| 3 | Joker |\n+-------------+--------------+\nUsers 表:\n+-------------+--------------+\n| user_id | name |\n+-------------+--------------+\n| 1 | Daniel |\n| 2 | Monica |\n| 3 | Maria |\n| 4 | James |\n+-------------+--------------+\nMovieRating 表:\n+-------------+--------------+--------------+-------------+\n| movie_id | user_id | rating | created_at |\n+-------------+--------------+--------------+-------------+\n| 1 | 1 | 3 | 2020-01-12 |\n| 1 | 2 | 4 | 2020-02-11 |\n| 1 | 3 | 2 | 2020-02-12 |\n| 1 | 4 | 1 | 2020-01-01 |\n| 2 | 1 | 5 | 2020-02-17 | \n| 2 | 2 | 2 | 2020-02-01 | \n| 2 | 3 | 2 | 2020-03-01 |\n| 3 | 1 | 3 | 2020-02-22 | \n| 3 | 2 | 4 | 2020-02-25 | \n+-------------+--------------+--------------+-------------+\n<strong>输出:</strong>\nResult 表:\n+--------------+\n| results |\n+--------------+\n| Daniel |\n| Frozen 2 |\n+--------------+\n<strong>解释:</strong>\nDaniel 和 Monica 都点评了 3 部电影(\"Avengers\", \"Frozen 2\" 和 \"Joker\") 但是 Daniel 字典序比较小。\nFrozen 2 和 Joker 在 2 月的评分都是 3.5,但是 Frozen 2 的字典序比较小。\n</pre>\n" ,
"isPaidOnly" : false ,
"difficulty" : "Medium" ,
"likes" : 55 ,
"dislikes" : 0 ,
"isLiked" : null ,
"similarQuestions" : "[]" ,
"contributors" : [ ] ,
"langToValidPlayground" : "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}" ,
"topicTags" : [
{
"name" : "Database" ,
"slug" : "database" ,
"translatedName" : "数据库" ,
"__typename" : "TopicTagNode"
}
] ,
"companyTagStats" : null ,
"codeSnippets" : [
{
"lang" : "MySQL" ,
"langSlug" : "mysql" ,
"code" : "# Write your MySQL query statement below" ,
"__typename" : "CodeSnippetNode"
} ,
{
"lang" : "MS SQL Server" ,
"langSlug" : "mssql" ,
"code" : "/* Write your T-SQL query statement below */" ,
"__typename" : "CodeSnippetNode"
} ,
{
"lang" : "Oracle" ,
"langSlug" : "oraclesql" ,
"code" : "/* Write your PL/SQL query statement below */" ,
"__typename" : "CodeSnippetNode"
} ,
{
"lang" : "Pandas" ,
"langSlug" : "pythondata" ,
"code" : "import pandas as pd\n\ndef movie_rating(movies: pd.DataFrame, users: pd.DataFrame, movie_rating: pd.DataFrame) -> pd.DataFrame:\n " ,
"__typename" : "CodeSnippetNode"
} ,
{
"lang" : "PostgreSQL" ,
"langSlug" : "postgresql" ,
"code" : "-- Write your PostgreSQL query statement below" ,
"__typename" : "CodeSnippetNode"
}
] ,
2023-12-09 19:57:46 +08:00
"stats" : "{\"totalAccepted\": \"16.7K\", \"totalSubmission\": \"45.9K\", \"totalAcceptedRaw\": 16691, \"totalSubmissionRaw\": 45854, \"acRate\": \"36.4%\"}" ,
2023-12-09 18:53:53 +08:00
"hints" : [ ] ,
"solution" : null ,
"status" : null ,
"sampleTestCase" : "{\"headers\": {\"Movies\": [\"movie_id\", \"title\"], \"Users\": [\"user_id\", \"name\"], \"MovieRating\": [\"movie_id\", \"user_id\", \"rating\", \"created_at\"]}, \"rows\": {\"Movies\": [[1, \"Avengers\"], [2, \"Frozen 2\"], [3, \"Joker\"]], \"Users\": [[1, \"Daniel\"], [2, \"Monica\"], [3, \"Maria\"], [4, \"James\"]], \"MovieRating\": [[1, 1, 3, \"2020-01-12\"], [1, 2, 4, \"2020-02-11\"], [1, 3, 2, \"2020-02-12\"], [1, 4, 1, \"2020-01-01\"], [2, 1, 5, \"2020-02-17\"], [2, 2, 2, \"2020-02-01\"], [2, 3, 2, \"2020-03-01\"], [3, 1, 3, \"2020-02-22\"], [3, 2, 4, \"2020-02-25\"]]}}" ,
"metaData" : "{\"mysql\":[\"Create table If Not Exists Movies (movie_id int, title varchar(30))\",\"Create table If Not Exists Users (user_id int, name varchar(30))\",\"Create table If Not Exists MovieRating (movie_id int, user_id int, rating int, created_at date)\"],\"mssql\":[\"Create table Movies (movie_id int, title varchar(30))\",\"Create table Users (user_id int, name varchar(30))\",\"Create table MovieRating (movie_id int, user_id int, rating int, created_at date)\"],\"oraclesql\":[\"Create table Movies (movie_id int, title varchar(30))\",\"Create table Users (user_id int, name varchar(30))\",\"Create table MovieRating (movie_id int, user_id int, rating int, created_at date)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"movie_rating\",\"pythondata\":[\"Movies = pd.DataFrame([], columns=['movie_id', 'title']).astype({'movie_id':'Int64', 'title':'object'})\",\"Users = pd.DataFrame([], columns=['user_id', 'name']).astype({'user_id':'Int64', 'name':'object'})\",\"MovieRating = pd.DataFrame([], columns=['movie_id', 'user_id', 'rating', 'created_at']).astype({'movie_id':'Int64', 'user_id':'Int64', 'rating':'Int64', 'created_at':'datetime64[ns]'})\"],\"postgresql\":[\"\\nCreate table If Not Exists Movies (movie_id int, title varchar(30))\",\"Create table If Not Exists Users (user_id int, name varchar(30))\",\"Create table If Not Exists MovieRating (movie_id int, user_id int, rating int, created_at date)\"],\"database_schema\":{\"Movies\":{\"movie_id\":\"INT\",\"title\":\"VARCHAR(30)\"},\"Users\":{\"user_id\":\"INT\",\"name\":\"VARCHAR(30)\"},\"MovieRating\":{\"movie_id\":\"INT\",\"user_id\":\"INT\",\"rating\":\"INT\",\"created_at\":\"DATE\"}}}" ,
"judgerAvailable" : true ,
"judgeType" : "large" ,
"mysqlSchemas" : [
"Create table If Not Exists Movies (movie_id int, title varchar(30))" ,
"Create table If Not Exists Users (user_id int, name varchar(30))" ,
"Create table If Not Exists MovieRating (movie_id int, user_id int, rating int, created_at date)" ,
"Truncate table Movies" ,
"insert into Movies (movie_id, title) values ('1', 'Avengers')" ,
"insert into Movies (movie_id, title) values ('2', 'Frozen 2')" ,
"insert into Movies (movie_id, title) values ('3', 'Joker')" ,
"Truncate table Users" ,
"insert into Users (user_id, name) values ('1', 'Daniel')" ,
"insert into Users (user_id, name) values ('2', 'Monica')" ,
"insert into Users (user_id, name) values ('3', 'Maria')" ,
"insert into Users (user_id, name) values ('4', 'James')" ,
"Truncate table MovieRating" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('1', '1', '3', '2020-01-12')" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('1', '2', '4', '2020-02-11')" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('1', '3', '2', '2020-02-12')" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('1', '4', '1', '2020-01-01')" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('2', '1', '5', '2020-02-17')" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('2', '2', '2', '2020-02-01')" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('2', '3', '2', '2020-03-01')" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('3', '1', '3', '2020-02-22')" ,
"insert into MovieRating (movie_id, user_id, rating, created_at) values ('3', '2', '4', '2020-02-25')"
] ,
"enableRunCode" : true ,
"envInfo" : "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}" ,
"book" : null ,
"isSubscribed" : false ,
"isDailyQuestion" : false ,
"dailyRecordStatus" : null ,
"editorType" : "CKEDITOR" ,
"ugcQuestionId" : null ,
"style" : "LEETCODE" ,
"exampleTestcases" : "{\"headers\": {\"Movies\": [\"movie_id\", \"title\"], \"Users\": [\"user_id\", \"name\"], \"MovieRating\": [\"movie_id\", \"user_id\", \"rating\", \"created_at\"]}, \"rows\": {\"Movies\": [[1, \"Avengers\"], [2, \"Frozen 2\"], [3, \"Joker\"]], \"Users\": [[1, \"Daniel\"], [2, \"Monica\"], [3, \"Maria\"], [4, \"James\"]], \"MovieRating\": [[1, 1, 3, \"2020-01-12\"], [1, 2, 4, \"2020-02-11\"], [1, 3, 2, \"2020-02-12\"], [1, 4, 1, \"2020-01-01\"], [2, 1, 5, \"2020-02-17\"], [2, 2, 2, \"2020-02-01\"], [2, 3, 2, \"2020-03-01\"], [3, 1, 3, \"2020-02-22\"], [3, 2, 4, \"2020-02-25\"]]}}" ,
"__typename" : "QuestionNode"
}
}
}