1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-26 02:00:27 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode/problem/minimum-incompatibility.html

44 lines
1.8 KiB
HTML
Raw Normal View History

2022-03-27 18:27:43 +08:00
<p>You are given an integer array <code>nums</code> and an integer <code>k</code>. You are asked to distribute this array into <code>k</code> subsets of <strong>equal size</strong> such that there are no two equal elements in the same subset.</p>
<p>A subset&#39;s <strong>incompatibility</strong> is the difference between the maximum and minimum elements in that array.</p>
<p>Return <em>the <strong>minimum possible sum of incompatibilities</strong> of the </em><code>k</code> <em>subsets after distributing the array optimally, or return </em><code>-1</code><em> if it is not possible.</em></p>
<p>A subset is a group integers that appear in the array with no particular order.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,1,4], k = 2
<strong>Output:</strong> 4
<strong>Explanation:</strong> The optimal distribution of subsets is [1,2] and [1,4].
The incompatibility is (2-1) + (4-1) = 4.
Note that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements.</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [6,3,8,1,3,1,2,2], k = 4
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3].
The incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6.
</pre>
<p><strong>Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,3,3,6,3,3], k = 3
<strong>Output:</strong> -1
<strong>Explanation:</strong> It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= k &lt;= nums.length &lt;= 16</code></li>
<li><code>nums.length</code> is divisible by <code>k</code></li>
<li><code>1 &lt;= nums[i] &lt;= nums.length</code></li>
</ul>