1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 02:58:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode/problem/minimum-cost-to-split-an-array.html

71 lines
3.1 KiB
HTML
Raw Normal View History

2023-01-23 20:16:24 +08:00
<p>You are given an integer array <code>nums</code> and an integer <code>k</code>.</p>
<p>Split the array into some number of non-empty subarrays. The <strong>cost</strong> of a split is the sum of the <strong>importance value</strong> of each subarray in the split.</p>
<p>Let <code>trimmed(subarray)</code> be the version of the subarray where all numbers which appear only once are removed.</p>
<ul>
<li>For example, <code>trimmed([3,1,2,4,3,4]) = [3,4,3,4].</code></li>
</ul>
<p>The <strong>importance value</strong> of a subarray is <code>k + trimmed(subarray).length</code>.</p>
<ul>
<li>For example, if a subarray is <code>[1,2,3,3,3,4,4]</code>, then <font face="monospace">trimmed(</font><code>[1,2,3,3,3,4,4]) = [3,3,3,4,4].</code>The importance value of this subarray will be <code>k + 5</code>.</li>
</ul>
<p>Return <em>the minimum possible cost of a split of </em><code>nums</code>.</p>
<p>A <strong>subarray</strong> is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,1,2,1,3,3], k = 2
<strong>Output:</strong> 8
<strong>Explanation:</strong> We split nums to have two subarrays: [1,2], [1,2,1,3,3].
The importance value of [1,2] is 2 + (0) = 2.
The importance value of [1,2,1,3,3] is 2 + (2 + 2) = 6.
The cost of the split is 2 + 6 = 8. It can be shown that this is the minimum possible cost among all the possible splits.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,1,2,1], k = 2
<strong>Output:</strong> 6
<strong>Explanation:</strong> We split nums to have two subarrays: [1,2], [1,2,1].
The importance value of [1,2] is 2 + (0) = 2.
The importance value of [1,2,1] is 2 + (2) = 4.
The cost of the split is 2 + 4 = 6. It can be shown that this is the minimum possible cost among all the possible splits.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,1,2,1], k = 5
<strong>Output:</strong> 10
<strong>Explanation:</strong> We split nums to have one subarray: [1,2,1,2,1].
The importance value of [1,2,1,2,1] is 5 + (3 + 2) = 10.
The cost of the split is 10. It can be shown that this is the minimum possible cost among all the possible splits.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 1000</code></li>
<li><code>0 &lt;= nums[i] &lt; nums.length</code></li>
<li><code>1 &lt;= k &lt;= 10<sup>9</sup></code></li>
</ul>
<p>&nbsp;</p>
<style type="text/css">.spoilerbutton {display:block; border:dashed; padding: 0px 0px; margin:10px 0px; font-size:150%; font-weight: bold; color:#000000; background-color:cyan; outline:0; 
}
.spoiler {overflow:hidden;}
.spoiler > div {-webkit-transition: all 0s ease;-moz-transition: margin 0s ease;-o-transition: all 0s ease;transition: margin 0s ease;}
.spoilerbutton[value="Show Message"] + .spoiler > div {margin-top:-500%;}
.spoilerbutton[value="Hide Message"] + .spoiler {padding:5px;}
</style>