<p>You are given an array of <code>words</code> where each word consists of lowercase English letters.</p>
<p><code>word<sub>A</sub></code> is a <strong>predecessor</strong> of <code>word<sub>B</sub></code> if and only if we can insert <strong>exactly one</strong> letter anywhere in <code>word<sub>A</sub></code><strong>without changing the order of the other characters</strong> to make it equal to <code>word<sub>B</sub></code>.</p>
<ul>
<li>For example, <code>"abc"</code> is a <strong>predecessor</strong> of <code>"ab<u>a</u>c"</code>, while <code>"cba"</code> is not a <strong>predecessor</strong> of <code>"bcad"</code>.</li>
</ul>
<p>A <strong>word chain</strong><em></em>is a sequence of words <code>[word<sub>1</sub>, word<sub>2</sub>, ..., word<sub>k</sub>]</code> with <code>k >= 1</code>, where <code>word<sub>1</sub></code> is a <strong>predecessor</strong> of <code>word<sub>2</sub></code>, <code>word<sub>2</sub></code> is a <strong>predecessor</strong> of <code>word<sub>3</sub></code>, and so on. A single word is trivially a <strong>word chain</strong> with <code>k == 1</code>.</p>
<p>Return <em>the <strong>length</strong> of the <strong>longest possible word chain</strong> with words chosen from the given list of </em><code>words</code>.</p>
<strong>Input:</strong> words = ["xbc","pcxbcf","xb","cxbc","pcxbc"]
<strong>Output:</strong> 5
<strong>Explanation:</strong> All the words can be put in a word chain ["xb", "xb<u>c</u>", "<u>c</u>xbc", "<u>p</u>cxbc", "pcxbc<u>f</u>"].