<p>You have a bomb to defuse, and your time is running out! Your informer will provide you with a <strong>circular</strong> array <code>code</code> of length of <code>n</code> and a key <code>k</code>.</p>
<p>To decrypt the code, you must replace every number. All the numbers are replaced <strong>simultaneously</strong>.</p>
<ul>
<li>If <code>k > 0</code>, replace the <code>i<sup>th</sup></code> number with the sum of the <strong>next</strong><code>k</code> numbers.</li>
<li>If <code>k < 0</code>, replace the <code>i<sup>th</sup></code> number with the sum of the <strong>previous</strong><code>k</code> numbers.</li>
<li>If <code>k == 0</code>, replace the <code>i<sup>th</sup></code> number with <code>0</code>.</li>
</ul>
<p>As <code>code</code> is circular, the next element of <code>code[n-1]</code> is <code>code[0]</code>, and the previous element of <code>code[0]</code> is <code>code[n-1]</code>.</p>
<p>Given the <strong>circular</strong> array <code>code</code> and an integer key <code>k</code>, return <em>the decrypted code to defuse the bomb</em>!</p>
<strong>Explanation:</strong> Each number is replaced by the sum of the next 3 numbers. The decrypted code is [7+1+4, 1+4+5, 4+5+7, 5+7+1]. Notice that the numbers wrap around.
<strong>Explanation:</strong> The decrypted code is [3+9, 2+3, 4+2, 9+4]. Notice that the numbers wrap around again. If k is negative, the sum is of the <strong>previous</strong> numbers.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == code.length</code></li>
<li><code>1 <= n <= 100</code></li>
<li><code>1 <= code[i] <= 100</code></li>
<li><code>-(n - 1) <= k <= n - 1</code></li>