2022-03-27 18:27:43 +08:00
< p > An integer < code > x< / code > is < strong > numerically balanced< / strong > if for every digit < code > d< / code > in the number < code > x< / code > , there are < strong > exactly< / strong > < code > d< / code > occurrences of that digit in < code > x< / code > .< / p >
< p > Given an integer < code > n< / code > , return < em > the < strong > smallest numerically balanced< / strong > number < strong > strictly greater< / strong > than < / em > < code > n< / code > < em > .< / em > < / p >
< p > < / p >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 1:< / strong > < / p >
2022-03-27 18:27:43 +08:00
< pre >
< strong > Input:< / strong > n = 1
< strong > Output:< / strong > 22
< strong > Explanation:< / strong >
22 is numerically balanced since:
- The digit 2 occurs 2 times.
It is also the smallest numerically balanced number strictly greater than 1.
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 2:< / strong > < / p >
2022-03-27 18:27:43 +08:00
< pre >
< strong > Input:< / strong > n = 1000
< strong > Output:< / strong > 1333
< strong > Explanation:< / strong >
1333 is numerically balanced since:
- The digit 1 occurs 1 time.
- The digit 3 occurs 3 times.
It is also the smallest numerically balanced number strictly greater than 1000.
Note that 1022 cannot be the answer because 0 appeared more than 0 times.
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 3:< / strong > < / p >
2022-03-27 18:27:43 +08:00
< pre >
< strong > Input:< / strong > n = 3000
< strong > Output:< / strong > 3133
< strong > Explanation:< / strong >
3133 is numerically balanced since:
- The digit 1 occurs 1 time.
- The digit 3 occurs 3 times.
It is also the smallest numerically balanced number strictly greater than 3000.
< / pre >
< p > < / p >
< p > < strong > Constraints:< / strong > < / p >
< ul >
< li > < code > 0 < = n < = 10< sup > 6< / sup > < / code > < / li >
< / ul >