"content":"<p>There is a <strong>binary</strong> tree rooted at <code>0</code> consisting of <code>n</code> nodes. The nodes are labeled from <code>0</code> to <code>n - 1</code>. You are given a <strong>0-indexed</strong> integer array <code>parents</code> representing the tree, where <code>parents[i]</code> is the parent of node <code>i</code>. Since node <code>0</code> is the root, <code>parents[0] == -1</code>.</p>\n\n<p>Each node has a <strong>score</strong>. To find the score of a node, consider if the node and the edges connected to it were <strong>removed</strong>. The tree would become one or more <strong>non-empty</strong> subtrees. The <strong>size</strong> of a subtree is the number of the nodes in it. The <strong>score</strong> of the node is the <strong>product of the sizes</strong> of all those subtrees.</p>\n\n<p>Return <em>the <strong>number</strong> of nodes that have the <strong>highest score</strong></em>.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n<img alt=\"example-1\" src=\"https://assets.leetcode.com/uploads/2021/10/03/example-1.png\" style=\"width: 604px; height: 266px;\" />\n<pre>\n<strong>Input:</strong> parents = [-1,2,0,2,0]\n<strong>Output:</strong> 3\n<strong>Explanation:</strong>\n- The score of node 0 is: 3 * 1 = 3\n- The score of node 1 is: 4 = 4\n- The score of node 2 is: 1 * 1 * 2 = 2\n- The score of node 3 is: 4 = 4\n- The score of node 4 is: 4 = 4\nThe highest score is 4, and three nodes (node 1, node 3, and node 4) have the highest score.\n</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n<img alt=\"example-2\" src=\"https://assets.leetcode.com/uploads/2021/10/03/example-2.png\" style=\"width: 95px; height: 143px;\" />\n<pre>\n<strong>Input:</strong> parents = [-1,2,0]\n<strong>Output:</strong> 2\n<strong>Explanation:</strong>\n- The score of node 0 is: 2 = 2\n- The score of node 1 is: 2 = 2\n- The score of node 2 is: 1 * 1 = 1\nThe highest score is 2, and two nodes (node 0 and node 1) have the highest score.\n</pre>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>n == parents.length</code></li>\n\t<li><code>2 <= n <= 10<sup>5</sup></code></li>\n\t<li><code>parents[0] == -1</code></li>\n\t<li><code>0 <= parents[i] <= n - 1</code> for <code>i != 0</code></li>\n\t<li><code>parents</code> represents a valid binary tree.</li>\n</ul>\n",
"For each node, you need to find the sizes of the subtrees rooted in each of its children. Maybe DFS?",
"How to determine the number of nodes in the rest of the tree? Can you subtract the size of the subtree rooted at the node from the total number of nodes of the tree?",
"Use these values to compute the score of the node. Track the maximum score, and how many nodes achieve such score."
"envInfo":"{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 11 </code> using the latest C++ 20 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code>OpenJDK 17</code>. Java 8 features such as lambda expressions and stream API can be used. </p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 8.2</code> using the gnu11 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O1</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10\\\" target=\\\"_blank\\\">C# 10 with .NET 6 runtime</a></p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use 5.3.0 version of <a href=\\\"https://github.com/datastructures-js/priority-queue/tree/fb4fdb984834421279aeb081df7af624d17c2a03\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and 4.2.1 version of <a href=\\\"https://githu