<p>You are given an integer <code>n</code>. You roll a fair 6-sided dice <code>n</code> times. Determine the total number of <strong>distinct</strong> sequences of rolls possible such that the following conditions are satisfied:</p>
<ol>
<li>The <strong>greatest common divisor</strong> of any <strong>adjacent</strong> values in the sequence is equal to <code>1</code>.</li>
<li>There is <strong>at least</strong> a gap of <code>2</code> rolls between <strong>equal</strong> valued rolls. More formally, if the value of the <code>i<sup>th</sup></code> roll is <strong>equal</strong> to the value of the <code>j<sup>th</sup></code> roll, then <code>abs(i - j) > 2</code>.</li>
</ol>
<p>Return <em>the<strong> total number</strong> of distinct sequences possible</em>. Since the answer may be very large, return it <strong>modulo</strong><code>10<sup>9</sup> + 7</code>.</p>
<p>Two sequences are considered distinct if at least one element is different.</p>