<p>Given an array of integers <code>nums</code> containing <code>n + 1</code> integers where each integer is in the range <code>[1, n]</code> inclusive.</p>
<p>There is only <strong>one repeated number</strong> in <code>nums</code>, return <em>this repeated number</em>.</p>
<p>You must solve the problem <strong>without</strong> modifying the array <code>nums</code> and uses only constant extra space.</p>
<li><code>1 <= n <= 10<sup>5</sup></code></li>
<li><code>nums.length == n + 1</code></li>
<li><code>1 <= nums[i] <= n</code></li>
<li>All the integers in <code>nums</code> appear only <strong>once</strong> except for <strong>precisely one integer</strong> which appears <strong>two or more</strong> times.</li>
</ul>
<p> </p>
<p><b>Follow up:</b></p>
<ul>
<li>How can we prove that at least one duplicate number must exist in <code>nums</code>?</li>
<li>Can you solve the problem in linear runtime complexity?</li>