2023-10-05 03:40:12 +08:00
{
"data" : {
"question" : {
"questionId" : "3066" ,
2023-12-09 18:42:21 +08:00
"questionFrontendId" : "2881" ,
"categoryTitle" : "pandas" ,
2023-10-05 03:40:12 +08:00
"boundTopicId" : 2394353 ,
"title" : "Create a New Column" ,
"titleSlug" : "create-a-new-column" ,
2023-12-09 18:42:21 +08:00
"content" : "<pre>\nDataFrame <code>employees</code>\n+-------------+--------+\n| Column Name | Type. |\n+-------------+--------+\n| name | object |\n| salary | int. |\n+-------------+--------+\n</pre>\n\n<p>A company plans to provide its employees with a bonus.</p>\n\n<p>Write a solution to create a new column name <code>bonus</code> that contains the <strong>doubled values</strong> of the <code>salary</code> column.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong>\nDataFrame employees\n+---------+--------+\n| name | salary |\n+---------+--------+\n| Piper | 4548 |\n| Grace | 28150 |\n| Georgia | 1103 |\n| Willow | 6593 |\n| Finn | 74576 |\n| Thomas | 24433 |\n+---------+--------+\n<strong>Output:</strong>\n+---------+--------+--------+\n| name | salary | bonus |\n+---------+--------+--------+\n| Piper | 4548 | 9096 |\n| Grace | 28150 | 56300 |\n| Georgia | 1103 | 2206 |\n| Willow | 6593 | 13186 |\n| Finn | 74576 | 149152 |\n| Thomas | 24433 | 48866 |\n+---------+--------+--------+\n<strong>Explanation:</strong> \nA new column bonus is created by doubling the value in the column salary.</pre>\n" ,
"translatedTitle" : "创建新列" ,
"translatedContent" : "<pre>\nDataFrame <code>employees</code>\n+-------------+--------+\n| Column Name | Type. |\n+-------------+--------+\n| name | object |\n| salary | int. |\n+-------------+--------+\n</pre>\n\n<p>一家公司计划为员工提供奖金。</p>\n\n<p>编写一个解决方案,创建一个名为 <code>bonus</code> 的新列,其中包含 <code>salary</code> 值的 <strong>两倍</strong>。</p>\n\n<p>返回结果格式如下示例所示。</p>\n\n<p> </p>\n\n<p><b>示例 1:</b></p>\n\n<pre>\n<b>输入:</b>\nDataFrame employees\n+---------+--------+\n| name | salary |\n+---------+--------+\n| Piper | 4548 |\n| Grace | 28150 |\n| Georgia | 1103 |\n| Willow | 6593 |\n| Finn | 74576 |\n| Thomas | 24433 |\n+---------+--------+\n<b>输出:</b>\n+---------+--------+--------+\n| name | salary | bonus |\n+---------+--------+--------+\n| Piper | 4548 | 9096 |\n| Grace | 28150 | 56300 |\n| Georgia | 1103 | 2206 |\n| Willow | 593 | 13186 |\n| Finn | 74576 | 149152 |\n| Thomas | 24433 | 48866 |\n+---------+--------+--------+\n<b>解释:</b>\n通过将 salary 列中的值加倍创建了一个新的 bonus 列。</pre>\n" ,
2023-10-05 03:40:12 +08:00
"isPaidOnly" : false ,
"difficulty" : "Easy" ,
"likes" : 0 ,
"dislikes" : 0 ,
"isLiked" : null ,
"similarQuestions" : "[]" ,
"contributors" : [ ] ,
"langToValidPlayground" : "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}" ,
"topicTags" : [ ] ,
"companyTagStats" : null ,
"codeSnippets" : [
{
"lang" : "Pandas" ,
"langSlug" : "pythondata" ,
"code" : "import pandas as pd\n\ndef createBonusColumn(employees: pd.DataFrame) -> pd.DataFrame:\n " ,
"__typename" : "CodeSnippetNode"
}
] ,
2023-12-09 19:57:46 +08:00
"stats" : "{\"totalAccepted\": \"1.6K\", \"totalSubmission\": \"1.8K\", \"totalAcceptedRaw\": 1630, \"totalSubmissionRaw\": 1842, \"acRate\": \"88.5%\"}" ,
2023-10-05 03:40:12 +08:00
"hints" : [
"Consider using the `[]` brackets with the new column name at the left side of the assignment. The calculation of the value is done element-wise."
] ,
"solution" : null ,
"status" : null ,
"sampleTestCase" : "{\"headers\":{\"employees\":[\"name\",\"salary\"]},\"rows\":{\"employees\":[[\"Piper\",4548],[\"Grace\",28150],[\"Georgia\",1103],[\"Willow\",6593],[\"Finn\",74576],[\"Thomas\",24433]]}}" ,
"metaData" : "{\n \"pythondata\": [\n \"employees = pd.DataFrame([], columns=['name', 'salary']).astype({'name':'object', 'salary':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"createBonusColumn\",\n \"languages\": [\n \"pythondata\"\n ]\n}" ,
"judgerAvailable" : true ,
"judgeType" : "large" ,
"mysqlSchemas" : [ ] ,
"enableRunCode" : true ,
"envInfo" : "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}" ,
"book" : null ,
"isSubscribed" : false ,
"isDailyQuestion" : false ,
"dailyRecordStatus" : null ,
"editorType" : "CKEDITOR" ,
"ugcQuestionId" : null ,
"style" : "LEETCODE" ,
"exampleTestcases" : "{\"headers\":{\"employees\":[\"name\",\"salary\"]},\"rows\":{\"employees\":[[\"Piper\",4548],[\"Grace\",28150],[\"Georgia\",1103],[\"Willow\",6593],[\"Finn\",74576],[\"Thomas\",24433]]}}" ,
"__typename" : "QuestionNode"
}
}
}