<p>You are given two positive integer arrays <code>nums1</code> and <code>nums2</code>, both of length <code>n</code>.</p>
<p>The <strong>absolute sum difference</strong> of arrays <code>nums1</code> and <code>nums2</code> is defined as the <strong>sum</strong> of <code>|nums1[i] - nums2[i]|</code> for each <code>0 <= i < n</code> (<strong>0-indexed</strong>).</p>
<p>You can replace <strong>at most one</strong> element of <code>nums1</code> with <strong>any</strong> other element in <code>nums1</code> to <strong>minimize</strong> the absolute sum difference.</p>
<p>Return the <em>minimum absolute sum difference <strong>after</strong> replacing at most one<strong></strong>element in the array <code>nums1</code>.</em> Since the answer may be large, return it <strong>modulo</strong><code>10<sup>9</sup> + 7</code>.</p>
<p><code>|x|</code> is defined as:</p>
<ul>
<li><code>x</code> if <code>x >= 0</code>, or</li>
<li><code>-x</code> if <code>x < 0</code>.</li>
<strong>Explanation: </strong>Replace the first element with the second: [<u><strong>1</strong></u>,10,4,4,2,7] => [<u><strong>10</strong></u>,10,4,4,2,7].
This yields an absolute sum difference of <code>|10-9| + |10-3| + |4-5| + |4-1| + |2-7| + |7-4| = 20</code>
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == nums1.length</code></li>
<li><code>n == nums2.length</code></li>
<li><code>1 <= n <= 10<sup>5</sup></code></li>