<p>The <strong>min-product</strong> of an array is equal to the <strong>minimum value</strong> in the array <strong>multiplied by</strong> the array's <strong>sum</strong>.</p>
<ul>
<li>For example, the array <code>[3,2,5]</code> (minimum value is <code>2</code>) has a min-product of <code>2 * (3+2+5) = 2 * 10 = 20</code>.</li>
</ul>
<p>Given an array of integers <code>nums</code>, return <em>the <strong>maximum min-product</strong> of any <strong>non-empty subarray</strong> of </em><code>nums</code>. Since the answer may be large, return it <strong>modulo</strong><code>10<sup>9</sup> + 7</code>.</p>
<p>Note that the min-product should be maximized <strong>before</strong> performing the modulo operation. Testcases are generated such that the maximum min-product <strong>without</strong> modulo will fit in a <strong>64-bit signed integer</strong>.</p>
<p>A <strong>subarray</strong> is a <strong>contiguous</strong> part of an array.</p>