2022-03-27 18:27:43 +08:00
< p > There are < code > 3n< / code > piles of coins of varying size, you and your friends will take piles of coins as follows:< / p >
< ul >
< li > In each step, you will choose < strong > any < / strong > < code > 3< / code > piles of coins (not necessarily consecutive).< / li >
< li > Of your choice, Alice will pick the pile with the maximum number of coins.< / li >
< li > You will pick the next pile with the maximum number of coins.< / li >
< li > Your friend Bob will pick the last pile.< / li >
< li > Repeat until there are no more piles of coins.< / li >
< / ul >
< p > Given an array of integers < code > piles< / code > where < code > piles[i]< / code > is the number of coins in the < code > i< sup > th< / sup > < / code > pile.< / p >
< p > Return the maximum number of coins that you can have.< / p >
< p > < / p >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 1:< / strong > < / p >
2022-03-27 18:27:43 +08:00
< pre >
< strong > Input:< / strong > piles = [2,4,1,2,7,8]
< strong > Output:< / strong > 9
< strong > Explanation: < / strong > Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with < strong > 7< / strong > coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with < strong > 2< / strong > coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1, < strong > 2< / strong > , 8), (2, < strong > 4< / strong > , 7) you only get 2 + 4 = 6 coins which is not optimal.
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 2:< / strong > < / p >
2022-03-27 18:27:43 +08:00
< pre >
< strong > Input:< / strong > piles = [2,4,5]
< strong > Output:< / strong > 4
< / pre >
2023-12-09 18:42:21 +08:00
< p > < strong class = "example" > Example 3:< / strong > < / p >
2022-03-27 18:27:43 +08:00
< pre >
< strong > Input:< / strong > piles = [9,8,7,6,5,1,2,3,4]
< strong > Output:< / strong > 18
< / pre >
< p > < / p >
< p > < strong > Constraints:< / strong > < / p >
< ul >
< li > < code > 3 < = piles.length < = 10< sup > 5< / sup > < / code > < / li >
< li > < code > piles.length % 3 == 0< / code > < / li >
< li > < code > 1 < = piles[i] < = 10< sup > 4< / sup > < / code > < / li >
< / ul >